

1 Design Strategies to Achieve Target Collapse

2 Risks for RC-Wall Buildings in Sedimentary

3 Basins

4 **Nasser A. Marafi¹, Andrew J. Makdisi², Jeffrey W. Berman³, and Marc O.**
5 **Eberhard⁴**

6 Studies of recorded ground motions and simulations have shown that deep
7 sedimentary basins can greatly increase the damage expected during earthquakes.
8 Unlike past earthquake design provisions, future ones are likely to consider basin
9 effects, but the consequences of accounting for these effects are uncertain. This
10 paper quantifies the impacts of basin amplification on the collapse risk of 4- to 24-
11 story reinforced concrete wall building archetypes in the uncoupled direction.
12 These buildings were designed for the seismic hazard level in Seattle according to
13 the ASCE 7-16 design provisions, which neglect basin effects. For ground motion
14 map frameworks that do consider basin effects (2018 USGS National Seismic
15 Hazard Model), the average collapse risk for these structures would be 2.1% in 50
16 years, which exceeds the target value of 1%. It is shown that this 1% target could
17 be achieved by: (a) increasing the design forces by 25%; (b) decreasing the drift
18 limits from 2.0% to 1.25%; or (c) increasing the median drift capacity of the gravity
19 systems to exceed 9%. The implications for these design changes are quantified in
20 terms of the cross-sectional area of the walls, longitudinal reinforcement, and
21 useable floor space. It is also shown that the collapse risk increases to 2.8% when
22 the results of physics-based ground motion simulations are used for the large-
23 magnitude Cascadia subduction interface earthquake contribution to the hazard. In

¹Postdoctoral Research Associate, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

²Graduate Research Assistant, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

³Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

⁴Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

this case, it is necessary to combine large changes in the drift capacities, design forces and/or drift limits to meet the collapse risk target.

Keywords: Deep sedimentary basin effects, reinforced concrete walls, nonlinear dynamic analysis, long duration motions, Cascadia Subduction Zone

Introduction

Deep sedimentary basins underlie some of the largest metropolitan regions in the Western United States, including the Puget Sound region, as well as parts of the Los Angeles, San Francisco Bay Area, and Salt Lake City regions. Such basins are known to amplify ground-motion components in long-period ranges (e.g., 1-4 s), resulting in increased spectral accelerations (e.g., Choi et al., 2005) and more damaging spectral shapes (Marafi et al., 2017), which combined, increase the likelihood of collapse during an earthquake (e.g., Heaton et al., 2006, Bijelic, 2018, Marafi et al., 2019c). As opposed to past versions of the National Seismic Hazard Model, the most recent version (NSHM, USGS 2018) accounts for the effect of basins on spectral acceleration. The adoption of the new hazard model into the code provisions (e.g., ASCE 7, AASHTO) would result in large increases in design spectral accelerations for structures located on deep basins.

The design spectral accelerations in the ASCE 7-16 provisions are derived from the 2014 NSHM, which does not consider the effects of deep basins. In this paper, the collapse risk for ASCE 7-16 code-compliant building archetypes is investigated for the increased spectral accelerations from the updated 2018 NSHM. These consequences are calculated for a series of previously designed reinforced concrete wall archetypes ranging from four to twenty-four stories. The archetypes were designed for the seismic hazard in Seattle, met the minimum code requirements set by ASCE 7-16, and are referred to as *reference archetypes* throughout this paper. Previous work by the authors (Marafi et al., 2019c) showed that, if basin effects were considered, the conditional collapse probability for ASCE 7-16 archetypes averaged 21% for an **M9** event on the Cascadia Subduction Zone with a return period of approximately 526 years (Petersen et al., 2014). This paper extends the previous work in three ways:

(1) The 50-year collapse risk was computed for each of the reference archetypes for the 2014 and 2018 NSHMs. To compute this risk, a multiple stripe analysis (MSA, Jalayer and Cornell, 2009) was conducted for each archetype; the intensity stripes corresponded to the spectral amplitude at a given archetype's fundamental period

55 ($S_a[T_1]$) with return periods of 100, 475, 975, 2,475, and 4,975 years. Each intensity
56 stripe within the MSA consisted of ground motions that were selected and scaled to a
57 source-specific (i.e., crustal, intraslab, and interface) conditional spectrum (Jayaram et
58 al., 2011) for that particular $S_a(T_1)$ return period and NSHM version. The resulting
59 collapse probabilities are compared to the 1% in 50-year collapse risk target set by the
60 ASCE 7-16 design provisions.

61 (2) The paper evaluates the effectiveness of implementing four strategies to redesign the
62 reference archetypes to reduce the seismic collapse risk for the 2018 NSHM demands.
63 The strategies are: (1) increasing the seismic response coefficient (C_s) in ASCE 7-16
64 by 25% or by 50%, (2) reducing the design drift limits prescribed in ASCE 7-16 from
65 2.0% to 1.5% or 1.25%, (3) increasing the drift capacity of the gravity system, and (4)
66 combining changes in strength or drift limits with increases in drift capacity. The
67 implications of adopting these design strategies are quantified in terms of the cross-
68 sectional area of the walls, longitudinal reinforcement, and useable floor space.

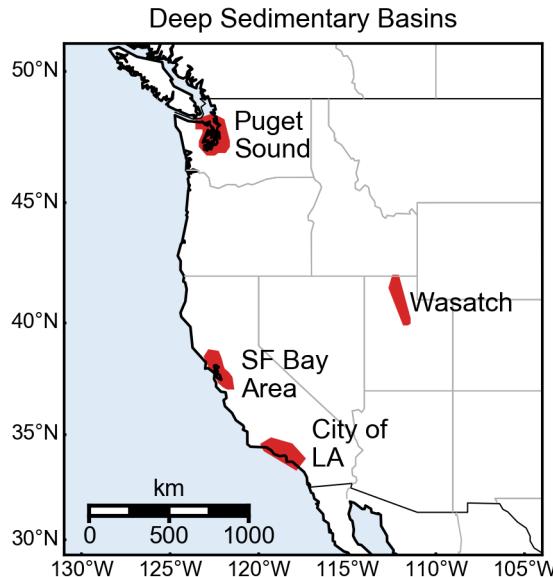
69 (3) Finally, the results of physics-based ground-motion simulations for 30 scenarios of a
70 full rupture of the Cascadia Subduction Zone (Frankel et al 2018) are incorporated into
71 the risk assessment. The simulations are used to compute the likelihood of collapse
72 during an M9 earthquake; MSA is used to assess the collapse risk for the other
73 earthquake magnitudes and sources, and the combined risk is computed.

74 To provide context for interpreting these new findings, the following sections summarize
75 previous work by ground-motion modeling researchers that quantified the effects of basins,
76 and how engineers are beginning to account for basin effects in building design.

77 **Observations of Basin Effects on Ground Motions**

78 Many researchers have shown that recorded motions have spectral accelerations that are
79 larger in deep sedimentary basins than in surrounding locations. Choi et al. (2005) quantified
80 these amplifications and developed an empirical model that accounts for the depth of the basin
81 and the location of the source relative to the basin. More recent ground-motion models that are
82 part of NGA-West2 (Bozorgnia et al., 2014) have included terms that account for deep
83 sedimentary basins during crustal earthquakes. Similar trends were found for subduction
84 earthquakes. For example, Morikawa and Fujiwara (2013) and Marafi et al. (2017) quantified

85 the amplification of spectral accelerations by basins during interface and intraslab earthquakes
86 in Japan.

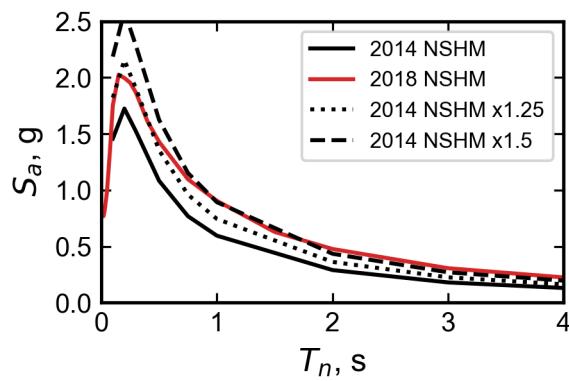

87 The effects of deep sedimentary basins on ground-motion characteristics have also been
88 observed in physics-based simulations of earthquake ground motions. For example, Aagaard
89 et al. (2010) simulated 39 Hayward Fault scenarios (**M**6.7 to **M**7.2) and found that the shaking
90 intensity increased within the basins near the San Francisco Bay Area (e.g., Cupertino basin,
91 Livermore basin). Graves et al. (2011) simulated numerous earthquakes as part of the Uniform
92 California Earthquake Forecast model (UCERF) and found that the ground-motion intensities
93 increased for sites within the Los Angeles basin. Moschetti et al. (2017) simulated **M**7
94 earthquakes on the Salt Lake City segment of the Wasatch Fault zone and found that the long-
95 period ground-motion intensity increased for deep basin sites in the Wasatch basin. Recently,
96 Frankel et al. (2018) and Wirth et al. (2018a) simulated **M**9 earthquakes on the Cascadia
97 Subduction Zone (CSZ) and found that ground-shaking intensity is amplified for periods from
98 1 s to 4 s for locations in basins within the Puget Lowland region, which includes Seattle.

99 Accounting for Basin Effects in Structural Design

100 Engineers have begun to account for the effects of basins on spectral acceleration. For
101 example, the Southern California Earthquake Center (SCEC) developed site-specific, risk-
102 adjusted, maximum considered earthquake (MCE_R) spectra for the metropolitan Los Angeles
103 area that consider the effects of basins, predicted using empirical ground-motion models and
104 3D physics-based simulations (using the CyberShake computational platform, Crouse et al.,
105 2018). The City of Seattle (Director's Rule 5, 2015) required that basin effects be considered
106 within performance-based design (PBD) procedures for buildings above 73 m (240 ft) without
107 a dual lateral-force resisting system (Chang et al., 2013). The basin amplification factors were
108 then increased and applied to all projects that use a site-specific hazard analysis in 2018
109 (Director's Rule 20, 2018, Wirth et al., 2018b).

110 The preliminary 2018 update of the National Seismic Hazard Model (USGS, 2018),
111 denoted here as 2018 NSHM, extends the treatment of basins to a national level. Specifically,
112 a recent USGS report (USGS, 2018) proposes that the effects of sedimentary basins be
113 considered for the Seattle, Los Angeles, San Francisco Bay Area, and Salt Lake City regions.
114 Figure 1 shows the extents of the basins considered in the 2018 NSHM. The new seismic
115 hazard model accounts for basin effects on spectral acceleration for all earthquake sources

116 using basin terms adapted from the crustal earthquake ground-motion models in the NGA-
117 West2 project (Bozorgnia et al., 2014).



118
119 Figure 1. Extent of deep sedimentary basins (as per USGS 2018) that are taken into account by the
120 2018 National Seismic Hazard Model.

121 For many locations, the inclusion of basin effects increased the spectral acceleration values
122 in the 2018 NSHM compared to the 2014 values. Table 1 lists values of the spectral
123 accelerations (at periods of 0.2 s, 1.0 s, and 2.0 s) corresponding to a 2% likelihood of
124 exceedance in 50 years (2,475-year return period), as determined from the 2014 and 2018
125 NSHMs (USGS 2014, USGS 2018), for $V_{s30} = 500$ m/s (Site Class C). The values are reported
126 for locations inside and outside basins (or near the shallower parts of the basin) for the four
127 regions identified in the 2018 USGS report (Figure 1). For example, the values from the 2018
128 NSHM S_a at a period of 2.0 s exceeded the corresponding 2014 values for Seattle, Compton,
129 Pleasanton, and Salt Lake City by 66%, 30%, 29%, and 15%, respectively. In contrast, for
130 nearby locations outside the basins or near the shallower parts of the basins, the changes in S_a
131 values were all less than 12%. In addition, the change in S_a values within the basins were much
132 smaller at short periods (e.g., 0.2 s) [+15%, +0%, -1%, and -4%].

133 A common proxy for basin depth is the depth from the surface to a layer with a shear-wave
134 velocity of at least 1.0 km/s or 2.5 km/s, denoted as $Z_{1.0}$ and $Z_{2.5}$, respectively. Compared to the
135 other basins, Seattle has the largest values of $Z_{2.5}$, which are equal to 6.9 km, respectively
136 (Table 1). Figure 2 shows the uniform hazard spectra (UHS) in the orientation corresponding
137 to median spectral acceleration values for Seattle for a 2% probability of exceedance in 50

138 years for Site Class C. This value, often denoted as $S_{a,\text{RotD50}}$, will be referred to as S_a throughout
139 the paper. As shown in Figure 2, the increases between the 2014 and 2018 NSHM occur over
140 a wide range of periods. The increases are on average approximately 25% for periods below
141 0.45 s, and the average increase is approximately 50% for periods between 0.45 s and 1.71 s.
142 This period range corresponds approximately to typical periods of 4- to 24-story reinforced
143 concrete wall buildings designed as per ASCE 7-16 (Marafi et al., 2019c). The increase is
144 largest at a period of 4 s, where S_a increases from 0.13 g to 0.22 g, corresponding to an increase
145 of 72%. However, at this period, the design base shear (ASCE 7-16) is governed by the
146 minimum base-shear requirements.

147
148 Figure 2. Uniform hazard spectra for a 2% probability of exceedance in 50 years in the direction
149 corresponding to median spectral acceleration (RotD50) for Seattle computed using the USGS (2019)
150 probabilistic seismic hazard analysis code.

151

152 Table 1. Uniform Hazard Spectral Accelerations (2% probability of exceedance in 50-years) for V_{S30}
 153 = 500 m/s (Site Class C)

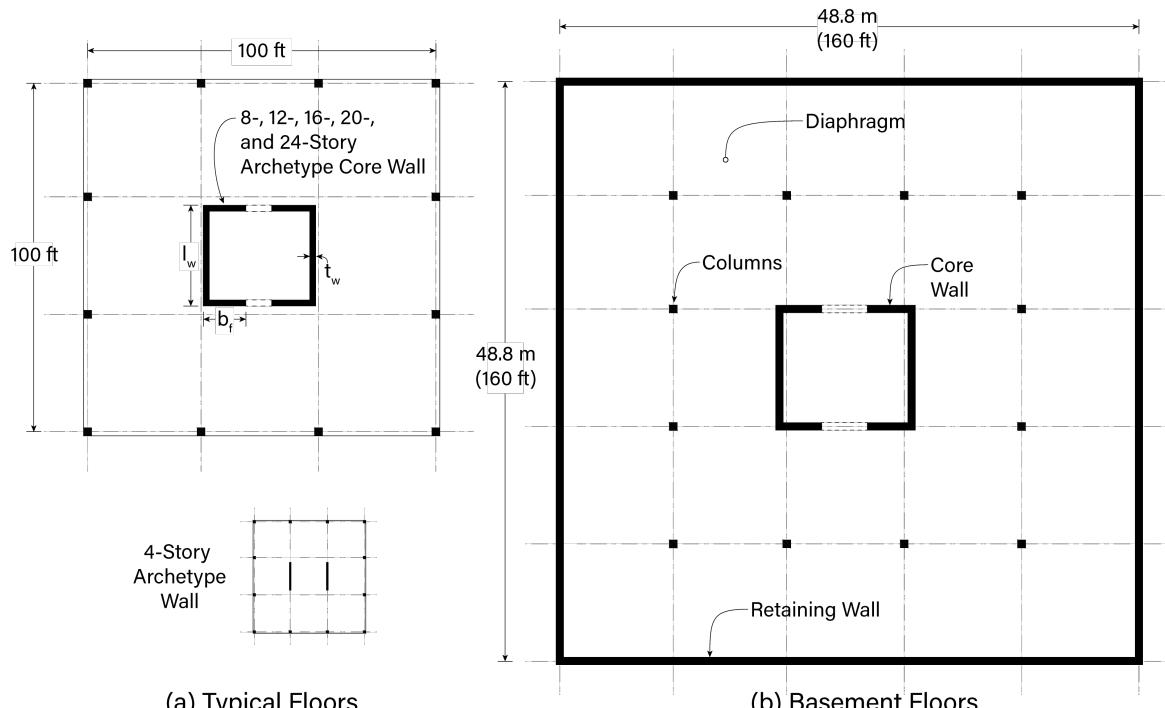
Region	Location	Inside/ Outside Basin	Lat., Long.	2014 NSHM				2018 NSHM			
				$Z_{1.0}$, km	$Z_{2.5}$, km	S_a (0.2s), g	S_a (1.0s), g	S_a (2.0s), g	S_a (0.2s), g	S_a (1.0s), g	S_a (2.0s), g
Puget Sound	Seattle, WA	Inside	47.60°N, -122.30°W	0.9 ^e	6.7 ^a	1.74	0.60	0.29	2.00	0.90	0.48
	La Grande, WA	Outside	46.84°N, -122.32°W	0.0 ^a	0.0 ^a	1.48	0.51	0.25	1.47	0.54	0.28
City of LA	Compton, CA	Inside	33.90°N, -118.22°W	0.7 ^b	4.3 ^b	2.09	0.80	0.36	2.09	0.96	0.47
	Los Angeles, CA	Outside	34.05°N, -118.25°W	0.3 ^b	2.1 ^b	2.35	0.93	0.41	2.32	0.98	0.44
SF Bay Area	Pleasanton, CA	Inside	37.70°N, -122.93°W	0.6 ^c	4.3 ^c	2.69	1.09	0.49	2.66	1.28	0.63
	San Francisco, CA	Outside	37.75°N, -122.40°W	0.0 ^c	0.9 ^c	2.16	0.91	0.46	2.08	0.93	0.47
Wasatch	Salt Lake City, UT	Inside	40.75°N, -111.90°W	0.5 ^d	2.8 ^d	1.98	0.77	0.33	1.90	0.84	0.38
	West Jordan, UT	Outside	40.60°N, -112.00°W	0.0 ^d	2.7 ^d	1.36	0.50	0.22	1.32	0.51	0.23

154 Notes: ^a $Z_{1.0}$ and $Z_{2.5}$ values were obtained from Stephenson et al. (2017). ^b $Z_{2.5}$ values were obtained from SCEC
 155 Community Velocity Model (CSM-S4.26, Small et al., 2017). ^c $Z_{1.0}$ and $Z_{2.5}$ values were obtained from the USGS
 156 San Francisco Bay Area Seismic Velocity Model (Aagard 2019). ^d $Z_{1.0}$ and $Z_{2.5}$ values were obtained from
 157 Moschetti et al. (2018). ^e $Z_{1.0}$ values modified based on USGS Report (2018). Note that all spectral accelerations
 158 are in the orientation that corresponds to the median spectral acceleration for each period (RotD50).

159 **Archetype Designs**

160 The effects of changes in design spectra between the 2014 and 2018 versions of the USGS
 161 hazard models were evaluated for modern mid- and high-rise reinforced concrete core-wall
 162 archetypal residential buildings, ranging from 4 to 24 stories. To reflect current practice in
 163 Seattle, all of the archetypes were designed and detailed as special reinforced concrete shear
 164 walls (Chapter 18 of ACI 318-14), with a seismic force-reduction factor, R , of 6. The
 165 archetypes were developed with extensive input from design professionals, following the same
 166 design methodology detailed in Marafi et al. (2019c). Buildings with a height above 73 m (240

167 ft) are not considered in this paper, because the design of such buildings in Seattle is subject to
168 extensive peer review, which accounts for the effects of the Seattle basin.


169 Figure 3a shows typical floor plans for the archetypes. The floor plate was 30.5 m (100 ft.)
170 long by 30.5 m (100 ft.) wide with three, 9.15-m (30-ft.) bays of slab-column gravity framing
171 in each orthogonal direction. The 4-story archetypes had two planar walls in each orthogonal
172 direction. Archetypes with 8 stories or more used a central core-wall archetype that was
173 symmetrical in both directions, in which one direction used two uncoupled C-shaped walls,
174 whereas the other direction used coupled C-shaped walls. As is typical for residential buildings,
175 the 4- and 8-story archetypes included two and three basement levels, respectively, and the
176 taller archetypes had four basement levels. The basements were assumed to have plan
177 dimensions of 48.8 m x 48.8 m (160 ft x 160 ft) (Figure 3b). The floor-to-floor heights for all
178 stories (basement levels included) were 3.05 m (10 ft).

179 All core-wall archetypes were designed and detailed according to Chapter 18 in ACI 318-
180 14. The core wall concrete was assumed to have a specified compressive strength (f'_c) of 55.2
181 MPa (8,000 psi) and reinforced with steel with nominal yield stress (f_y) of 414 MPa (60 ksi).

182 Six reference archetypes (4, 8, 12, 16, 20, and 24 stories) were designed to meet the
183 minimum prescriptive, equivalent-lateral-force (ELF) requirements of ASCE 7-16 (2017),
184 following the modal response spectrum analysis (MRSA) procedure. These provisions refer to
185 the 2014 NSHM ground-motion values. The maximum allowable drift for these archetypes was
186 2% for the design earthquake loads, and the flexural demand-to-capacity ratio was selected to
187 be near 1.0 at the ground floor. Key properties of these reference archetypes are provided in
188 Table 2, in which the reference archetypes are denoted by their number of stories (e.g., S8) and
189 with the additional designation of “-REF”.

190 For each of these six archetypes, the impacts of adopting four design strategies were
191 studied. As part of Design Strategy #1, archetypes were redesigned for lateral loads that are
192 25% or 50% larger than $S_{a,MCE}$ computed using the 2014 NSHM (denoted with -S125 or -S150).
193 As part of Design Strategy #2, archetypes were redesigned to meet a stricter story drift target
194 of 1.5% or 1.25% (denoted with -D150 or -D125), as opposed to the current ASCE 7-16 value
195 of 2.0%. Design Strategy #3 assumed no changes to the reference designs of the seismic force
196 resisting system, but it assumed that the gravity system could be redesigned to have a larger
197 drift capacity. Design Strategy #4 combined the archetype redesigns with increased strength

198 (Design Strategy #1) or stricter drift limit (Design Strategy #2) with improvements in the
199 ductility of the gravity system (Design Strategy #3).

200 (a) Typical Floors (b) Basement Floors
201 Figure 3. Plan view of archetypes at: (a) typical floors and (b) basement floors.

202 Table 2 lists the key properties for all of the archetype buildings. The resulting seismic
203 weights per unit floor area (excluding the basement levels) ranged from 8.27 kPa (173 psf) for
204 the 12-story reference archetype (S12-REF) to 9.91 kPa (207 psf) for the 24-story archetype
205 with a 50% increase in design lateral forces (S24-S150). The increase in weight per unit floor
206 area with respect to archetype stories is attributed to the increase in wall dimensions. Table 2
207 lists the upper limit on the design period ($C_u T_a$) used to compute C_s and the computed
208 fundamental period (T_1) with cracked concrete properties used in the modal analysis. The total
209 base shear, expressed as a percentage of the total building weight (C_s), ranged from 4.9% to
210 27.4%, depending on the archetype height and design strategy. The minimum base shear
211 requirement in ASCE 7-16 controlled the strength of the archetypes with 24 stories.

212

Table 2. Key archetype properties

Performance Group	Arch. ID	# of Stories (Basements)	$C_u T_a$ (s)	Computed Period, T_1^1 (s)	C_s	Computed W^2 (MN)	$\phi M_n/M_u^3$	V_u/V_c^3	Drift Ratio (%)	Axial Load Ratio ($P_g/f_c A_g$)
(ASCE 7-16)	S4-REF	4(2)	0.45	1.08	0.183	30.9	1.05	1.74	1.82	0.11
	S8-REF	8(3)	0.75	1.93	0.109	61.8	1.06	1.49	1.8	0.10
	S12-REF	12(4)	1.02	2.70	0.08	92.3	1.01	1.32	1.89	0.11
	S16-REF	16(4)	1.26	3.53	0.065	125.1	1.03	1.05	1.96	0.11
	S20-REF	20(4)	1.49	4.36	0.055	158.5	1.05	0.92	2.03	0.11
	S24-REF	24(4)	1.71	5.11	0.049 ⁴	195.0	1.04	0.85	2.00	0.11
Reference	S4-S125	4(2)	0.45	0.95	0.228	31.1	1.06	1.80	1.95	0.09
w/ x1.25 Design Forces	S8-S125	8(3)	0.75	1.57	0.136	62.6	1.05	1.65	1.84	0.08
	S12-S125	12(4)	1.02	2.12	0.100	94.0	1.08	1.38	1.87	0.09
	S16-S125	16(4)	1.26	2.36	0.081	132.3	1.04	0.90	1.86	0.08
	S20-S125	20(4)	1.49	2.58	0.068	171.1	1.07	0.69	1.93	0.07
	S24-S125	24(4)	1.71	2.78	0.062	213.4	1.06	0.60	1.97	0.07
Reference	S4-S150	4(2)	0.45	0.78	0.274	31.4	1.06	1.79	1.95	0.07
w/ x1.50 Design Forces	S8-S150	8(3)	0.75	1.41	0.163	63.4	1.04	1.68	1.90	0.07
	S12-S150	12(4)	1.02	2.02	0.12	95.8	1.07	1.29	1.95	0.08
	S16-S150	16(4)	1.26	2.22	0.097	134	1.05	1.04	1.93	0.07
	S20-S150	20(4)	1.49	2.38	0.082	175.3	1.06	0.74	1.92	0.07
	S24-S150	24(4)	1.71	2.56	0.074	221.0	1.08	0.63	1.95	0.06
Reference	S4-S150	4(2)	0.45	0.89	0.183	31.4	1.08	1.22	1.46	0.08
w/ 1.5% Design Drift Limit	S8-D150	8(3)	0.75	1.57	0.109	62.6	1.04	1.32	1.47	0.08
	S12-D150	12(4)	1.02	2.24	0.08	93.7	1.06	1.09	1.53	0.09
	S16-D150	16(4)	1.26	2.72	0.065	127.9	1.05	0.81	1.53	0.08
	S20-D150	20(4)	1.49	3.20	0.055	163.9	1.06	0.66	1.5	0.08
	S24-D150	24(4)	1.71	3.75	0.049 ⁴	200.7	1.06	0.60	1.51	0.08
Reference	S4-D125	4(2)	0.45	0.78	0.183	31.7	1.11	1.02	1.29	0.06
w/ x1.25% Design Drift Limit	S8-D125	8(3)	0.75	1.43	0.109	63.0	1.06	1.21	1.30	0.08
	S12-D125	12(4)	1.02	1.90	0.080	94.8	1.07	0.85	1.24	0.08
	S16-D125	16(4)	1.26	2.38	0.065	129	1.07	0.75	1.34	0.08
	S20-D125	20(4)	1.49	3.11	0.055	161.3	1.08	0.90	1.32	0.10
	S24-D125	24(4)	1.71	3.81	0.049 ⁴	193.8	1.07	1.02	1.36	0.13

Notes: ¹Period computed using cracked concrete properties, ²Building seismic weight only includes stories above the ground floor, ³computed at ground level and adjusted design forces, ⁴Minimum base shear controls.

217 The resulting ratio of horizontal shear force (due to seismic loads) to the concrete shear
218 capacity, V_u/V_c , ranged from 0.6 to 1.8, which is far below the allowable values (i.e., $V_u/V_c \leq$
219 5). Table 1 lists the resulting axial load ratios, $P_g/(A_g f'_c)$, where P_g is the axial load computed
220 using the 1.0D + 0.5 L load combination, and A_g is the gross cross-sectional area of the wall.
221 The axial load P_g was computed as the sum of the self-weight of the concrete core and the
222 gravity load corresponding to the tributary area resisted by the core, assumed to equal 50% of
223 the total floor area, equaling 464 m² (5000 ft²). The resulting axial load ratios ranged from 6%
224 to 13%. Appendix Tables 1-4 provide more information regarding the archetype geometry and
225 reinforcement ratios.

226 **Archetype Modelling**

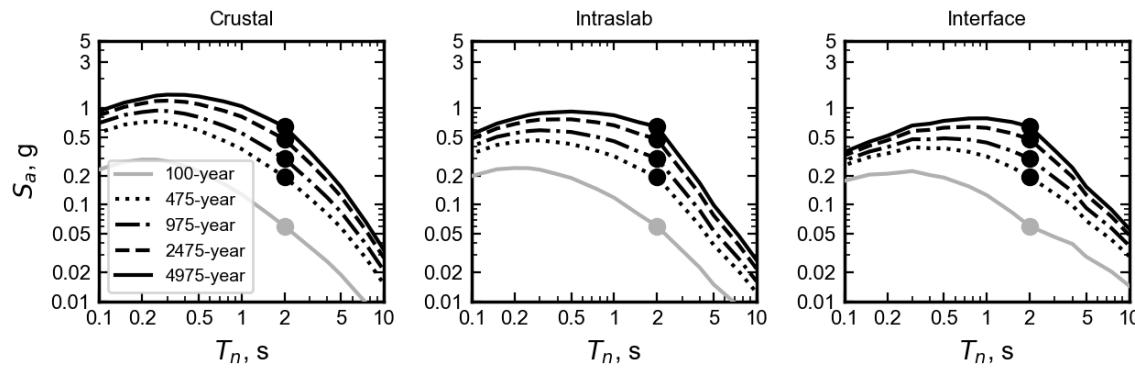
227 The seismic performance of all of the archetypes was assessed using 2D nonlinear models
228 in *OpenSees* (McKenna, 2016) with the help of the computational resources provided by
229 *DesignSafe-CI* (Rathje et al., 2016). These models did not account for the effects of torsion
230 and bidirectional loading on structural response and only analyzed the response of the walls in
231 the uncoupled direction (North-South orientation in Figure 3). The nonlinear behavior of the
232 wall was modeled using a methodology that was developed by Pugh et al. (2015) and Marafi
233 et al. (2019a), which uses displacement-based, beam-column elements with lumped-plasticity
234 fiber sections to capture the axial and flexural nonlinear responses of the RC walls. The stress-
235 strain behavior of the steel fibers includes cyclic strength degradation (Kunnath et al., 2009) to
236 account for strength deterioration expected with long-duration shaking. The model
237 methodology uses an elastic shear model and does not account for shear-flexure interaction.
238 Rebar buckling was accounted for by assuming that the rebar buckles and loses its entire
239 strength once the concrete reaches its the crushing strain. Marafi et al. (2019c) provide more
240 details of the modeling strategy.

241 The numerical models did not include the lateral-force resistance of the gravity system,
242 because the stiffness and strength contributions of the gravity system are usually much lower
243 than that of the lateral system. It should be noted that the gravity system can contribute ~10%
244 of the total lateral resistance of the building in some circumstances (SEAW Earthquake
245 Engineering Committee meeting, personal communication, 2018, January 9th).

247 The performance of each archetype was assessed using a multiple stripe analysis (Jalayer
248 and Cornell, 2009), in which the collapse probability was quantified at multiple intensity
249 measure levels, each corresponding to a particular return period. The intensity measure used in
250 the MSA was the spectral acceleration (S_a) at the fundamental period (T_1) of each structural
251 archetype, $S_a(T_1)$. The intensity stripes used in the MSA had return periods of 100, 475, 975,
252 2,475, and 4,975 years. The variety in return periods made it possible to account for the effects
253 of ground motions for a wide range of earthquake intensities, ranging from low-intensity events
254 that occur more frequently (i.e., lower return period) to high-intensity events that occur less
255 frequently (i.e., longer return period). The probability of collapse results from each intensity
256 level and corresponding earthquake return period was then integrated over the overall $S_a(T_1)$
257 hazard curve to estimate the probability of building collapse over a period of 50 years.

258 **Conditional Mean Spectra**

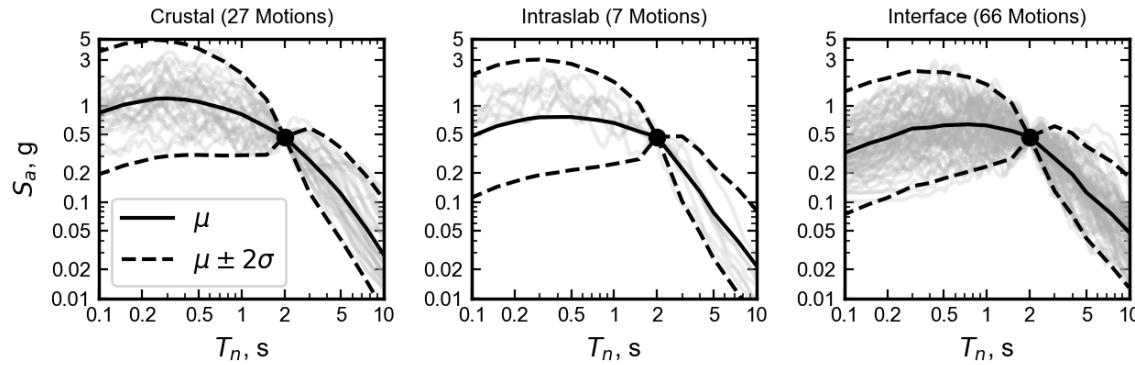
259 For each of the five return periods (100 through 4,975 years) and three types of source
260 mechanism (crustal, interface, and intraslab), ground motions were selected and scaled to
261 match a conditional mean and variance spectrum (Jayaram et al., 2011a). A conditional mean
262 spectrum (CMS) is meant to represent the expected ground motion response spectrum
263 conditioned on the occurrence of a target S_a at the computed fundamental period (T_1) of the
264 archetype (Table 2).


265 For each of the 15 combinations of return period and type of source mechanism, the CMS
266 at each conditioning period (Baker, 2011) was computed using the hazard deaggregation results
267 from the 2014 and 2018 NSHM codes (USGS, 2019) for the downtown Seattle location. The
268 CMS at each conditioning period was calculated as a weighted average (in log-scale) of the
269 CMS for each ground-motion model and particular seismic source (e.g., Seattle fault)
270 according to its percentage contribution to the hazard. These contributions are reported by the
271 deaggregation results computed using the NSHM code (USGS, 2019). The spectral
272 acceleration correlation functions used to calculate the CMS were assumed to be the same for
273 crustal, intraslab, and subduction earthquakes (Jayaram et al., 2011b, Baker and Jayaram,
274 2008).

275 Figure 4 shows the 2-s period CMS for each source mechanism for earthquake return
276 periods of 100, 475, 975, 2475, and 4,975-years for the 2018 NSHM. This range of earthquake

277 return periods are necessary to constrain the collapse prediction, and thus account for low-
 278 intensity shaking (0.06 g at 100-year level shaking) where structural collapse is less likely, and
 279 at high-intensity shaking (0.64 g at 4,975-year level) where structural collapse is more likely.

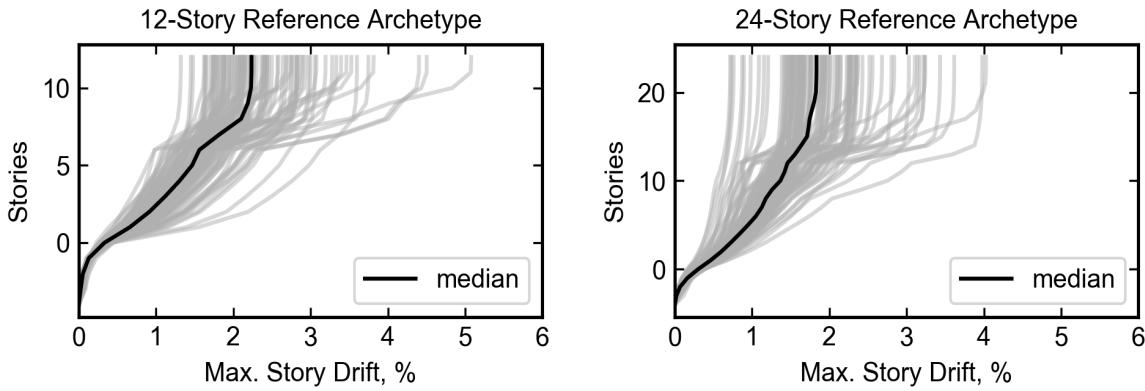
280 **Selection of Motions**


281 To capture the inter-event uncertainty in the conditional mean spectra, motions were
 282 selected and scaled to match the target mean and variance conditional spectra (Jayaram et al.,
 283 2011), referred as the conditional spectra thereafter. As an example, Figure 5 shows the
 284 response spectra for 100 motions selected to represent the three types of earthquake source
 285 mechanisms for a 2,475-year return earthquake response spectra conditioned at a period of
 286 2.0 s. Motions were selected to have spectral ordinates that are within two standard deviations
 287 of the target conditional mean spectra whilst achieving the target mean S_a and target variance
 288 at each period.

289
 290 Figure 4. Conditional mean spectra at 2-second period (RotD50) for: (a) crustal, (b) intraslab, and (c)
 291 interface earthquakes at the 100-year, 475-year, 975-year, 2475-year, and 4975-year hazard levels
 292 according to the 2018 National Seismic Hazard Model.

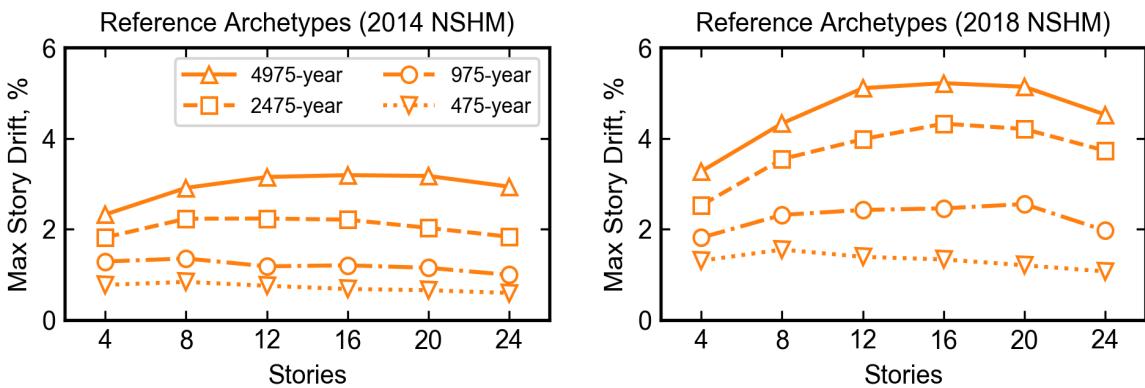
293 Using the hazard deaggregation results for each type of source mechanism, motions
 294 recorded from crustal, intraslab, and interface earthquakes were included in each ground
 295 motion set in proportion to their contribution to the overall seismic hazard at each period. For
 296 example, for a period of 2.0 s and a return period of 475 years, the contributions of the crustal,
 297 intraslab, and interface sources were 29%, 20%, and 51%, respectively. At a return period of
 298 2,475 years, the corresponding contributions were 27%, 7%, and 66%. To be consistent with
 299 the 2,475-year hazard deaggregation, Figure 5 (2.0 s conditional spectra) shows that 27, 7, and
 300 66 motions were used to represent the contribution of the crustal, intraslab and interface events,

301 respectively. Marafi (2018) provides further details of the ground-motion selection and scaling
 302 process.


303
 304 Figure 5. Ground motions scaled to match the 2.0-second period conditional mean and variance
 305 spectra for: (a) crustal, (b) intraslab, and (c) interface earthquakes at a 2475-year hazard level using
 306 the 2018 National Seismic Hazard Model.

307 Maximum Story Drift

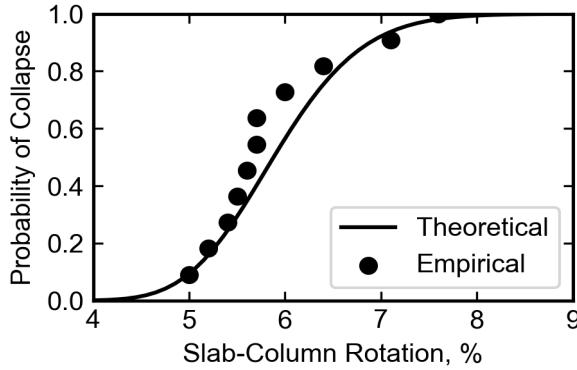
308 For each of the archetypes and for each of the five earthquake intensity levels
 309 (corresponding to return period of 100 years to 4975 years), the maximum story drifts (MSDs)
 310 were computed for both the 2014 and 2018 NSHM hazard levels. The relative rotations and
 311 strains were largest near the ground level, corresponding to the location where large amounts
 312 of wall damage would be expected to occur. However, story drift is a better indicator of
 313 performance for components of the gravity system (e.g., slab-column connections) and non-
 314 structural elements. Figure 6 shows the calculated maximum story drift along with the height
 315 of the structure for a 12-story reference archetype (S12-REF) and a 24-story reference
 316 archetype (S24-REF). As expected, the story drifts in the basement are near zero because the
 317 basement walls are very stiff. In contrast, the maximum story drifts occur near the top stories,
 318 because cantilevered walls accumulate rotations over their height.


319 For the reference archetypes, Figure 7a shows the median (of 100 motions) of the maximum
 320 story drift (computed over the height of each archetype) for all earthquake return period motion
 321 sets, where the conditional spectra were derived from the 2014 NSHM. As expected, the
 322 median MSD values increased with earthquake return period for all archetypes. For example,
 323 the median MSD, averaged for all archetypes, increased from 0.3% for a 475-year return period
 324 to 2.9% for a return period of 4,975 years. For a 2,475-year earthquake, the average of the
 325 median MSD values for all archetypes was around 2.1%. For comparison, the Tall Building

326 Initiative (TBI) guidelines (PEER, 2017) specify a mean maximum story drift limit of 3.0% at
 327 the MCE_R-level shaking, which has a return period close to 2,475-years. Thus, the archetype
 328 MSDs are consistent with expectations for the 2014 NSHM hazard for which they were
 329 designed.

330
 331 Figure 6. Distribution of story drifts with height for (a) the 12-story reference archetype and (b) the
 332 24-story reference archetype, subjected to motions that represent the 2,475-year earthquake (using the
 333 2018 National Seismic Hazard Model).

334 The inclusion of basin effects in the 2018 NSHM, and the corresponding increase in
 335 ground-motion intensity at all earthquake return periods resulted in increases in median MSD
 336 (Figure 7b). For example, the median MSD values averaged for all reference archetypes for
 337 the 2,475-year hazard increased from 2.1% using 2014 NSHM motions to 3.7% for 2018
 338 NSHM motions.


339
 340 Figure 7. Median of the maximum story drift with respect to archetype number of stories for ground
 341 motions selected and scaled to match the conditional spectra at 475-year, 975-year, 2495-year, and
 342 4975-year return periods using: (a) the 2014 version of the National Seismic Hazard Model and (b)
 343 the 2018 version of the National Seismic Hazard Model.

345 Seismic provisions in the United States target a uniform 1% likelihood of collapse during
346 a 50-year period. Collapse is typically quantified by engineers using the story drift of a structure
347 under intense ground shaking. Haselton et al. (2011b) define collapse as an increase in lateral
348 drift without bounds due to global P-Delta instability. A building may also collapse (or partially
349 collapse) due to the failure of components of the gravity system. Both failure mechanisms were
350 considered in this study.

351 **Drift Capacity of Gravity System**

352 Flat post-tensioned slabs are the most common gravity system in modern RC core-wall
353 residential structures. In this paper, the failure of the gravity system was assumed to be
354 triggered by the failure of the slab-column or slab-wall connection. At these connections,
355 integrity slab reinforcement might delay collapse after punching shear failure due to catenary
356 action; however, it was not possible to model this phenomenon, so punching shear failures
357 were treated as potential “collapses”.

358 Experimental data collected by Hueste et al. (2007 and 2009) were used to evaluate the
359 likelihood of collapse of the gravity system as a function of the slab-column rotation. Hueste
360 et al. found that the drift capacity of slab-column connections depended on the gravity shear
361 ratio (i.e., the ratio of shear load due to gravity loads to concrete shear capacity) and the
362 presence of shear reinforcement. For the reference archetypes, the slab-column connections
363 were assumed to be reinforced with shear studs and had a gravity shear ratio between 0.4 to
364 0.6. From the data collected by Hueste et al. (2009), the 11 experiments on connections that
365 satisfied these two criteria were conducted by Dilger and Cao, 1991, Dilger and Brown, 1995,
366 and Megally and Ghali, 2000. Figure 8 shows the cumulative distribution (black dots) of the
367 slab-column rotation capacity from those experiments, as well as the corresponding fitted
368 lognormal cumulative distribution (solid curve). The geometric mean of the slab-column
369 rotation capacity was 5.9%, and the lognormal standard deviation (σ_{ln}) was 0.12.

370

371 Figure 8. Probability of collapse due to slab-column punching shear failure with respect to the slab-
 372 column rotation (for experiments with shear-reinforcements and a gravity shear ratio between 0.4 to
 373 0.6).

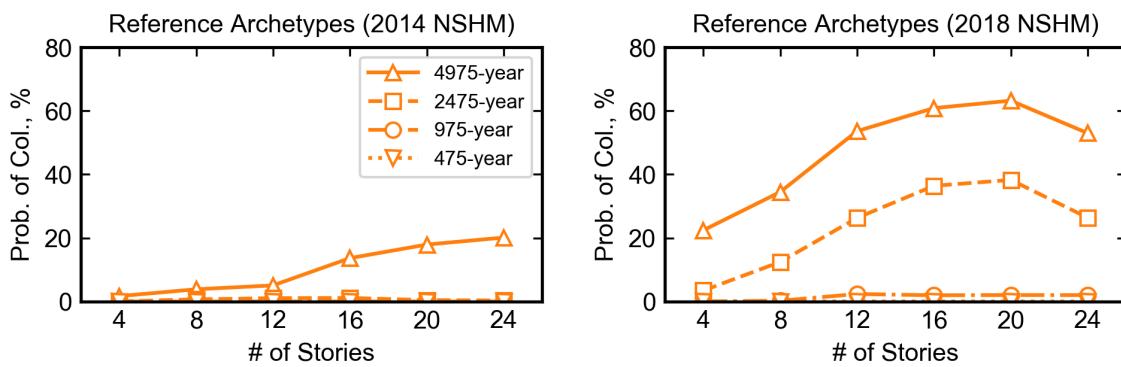
374 **Racking Deformations**

375 The engineering demands on the slab-column connections result from the in-plane
 376 rotational deformations of the gravity system bays. These rotations are affected by: (1) the
 377 cumulative rotation of the core wall at the wall-slab joint at any story, and (2) the added
 378 deformations due to racking effects that result from the difference in vertical deformations
 379 between the edge of the wall and the adjacent gravity-system column. These columns were
 380 assumed to be located on the perimeter of the building for the archetype considered here, as
 381 shown in Figure 3.

382 The total relative rotation between the slab-column and edge-of-wall (due to the
 383 combination of these effects) can be computed as the maximum story drift (MSD), amplified
 384 by a racking factor, γ_{rack} . Assuming rigid-body rotation of the wall, and assuming no axial
 385 shortening in the gravity system columns, the slab-column rotation, SCR, can be approximated
 386 as (Charney 1990):

$$387 \quad SCR = \gamma_{\text{rack}} MSD = \left(1 + \frac{l_w}{2l_{\text{bay}}}\right) MSD \quad (1)$$

388 where l_w is the length of the central core, and l_{bay} is the distance between the face of the core
 389 wall and the centerline of the gravity columns. The length of the core relative to the length of
 390 the gravity system bay (for a constant 30.5 m, 100 ft, floor width) varied among the archetypes.
 391 Consequently, γ_{rack} varied among the archetypes from 1.14 (Archetype S4-REF) to 1.45
 392 (Archetype S24-S150).

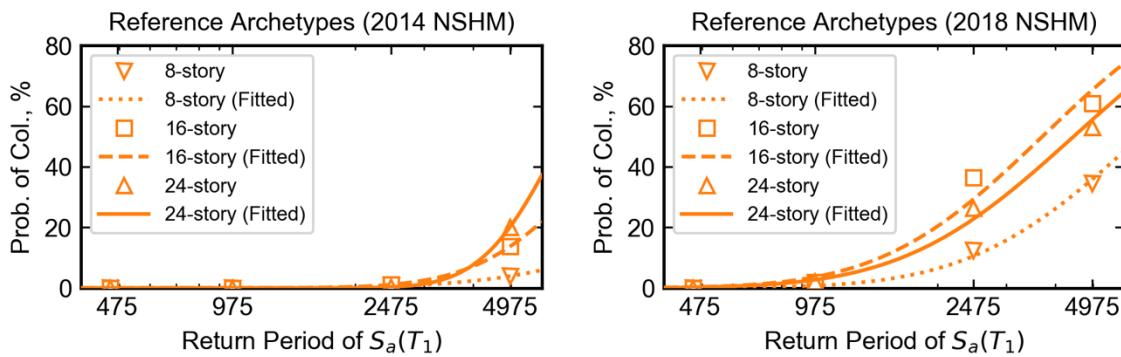

393 **Collapse Probability**

394 For each archetype and ground-motion set, the collapse probabilities at each level of
 395 intensity were computed considering the variability in the slab-column rotations demands (Eq.
 396 1) calculated from the maximum story drift demands and the variation in slab-column rotation
 397 capacity:

398
$$P[C|motion\ set] = \frac{1}{N} \sum_{i=1}^N P[C |SCR_i] \quad (2)$$

399 where N corresponds to the number of motions in each earthquake intensity ground-motion set
 400 (i.e., 100 motions in each return period stripe), and $P[C|SCR_i]$ is the probability of collapse
 401 given the slab-column rotation (SCR, Figure 8) observed from the i th motion within that set. It
 402 should be noted that the probability of collapse was taken as 1.0 in cases where a global P-
 403 Delta instability occurred.

404 The collapse probabilities (Eq. 2) for each archetype and intensity stripe ground-motion set
 405 are shown in Figure 9. As expected, the trends were similar to Figure 7 (which shows median
 406 MSD values); the collapse probability increased with earthquake return periods for all
 407 archetypes. The inclusion of basin effects in the 2018 NSHM (Figure 9b) greatly increased the
 408 collapse probability over those calculated for the 2014 NSHM (Figure 9a). For example, the
 409 collapse probability for the 20-story archetype increased from 0.42% (2014) to 38% (2018) for
 410 a 2,475-year return period event.



411

412 Figure 9. Probability of collapse with respect to archetype number of stories for ground motions
 413 selected and scaled to match the conditional spectra at 475-year, 975-year, 2495-year, and 4975-year
 414 return periods using: (a) the 2014 version of the National Seismic Hazard Model and the (b) 2018
 415 version of the National Seismic Hazard Model.

416 **50-Year Collapse Risk**

417 ASCE 7-16 (ASCE, 2016) targets a maximum collapse probability of 1% in the 50-year
 418 design life of regular buildings. To compare the results obtained above with this target, the
 419 annual rate of collapse ($\lambda_{collapse}$), considering the full range of expected shaking intensities from
 420 all earthquake sources that contribute to the seismic hazard was computed. Figure 10 shows
 421 the probability of collapse for the 8-story, 16-story, and 24-story archetypes with respect to
 422 earthquake return period for each ground-motion set (shown using the symbols), for the 2014
 423 NSHM (Figure 10a) and 2018 NSHM (Figure 10b). The figure also shows smooth curves that
 424 represent a fitted lognormal distribution of the data points.

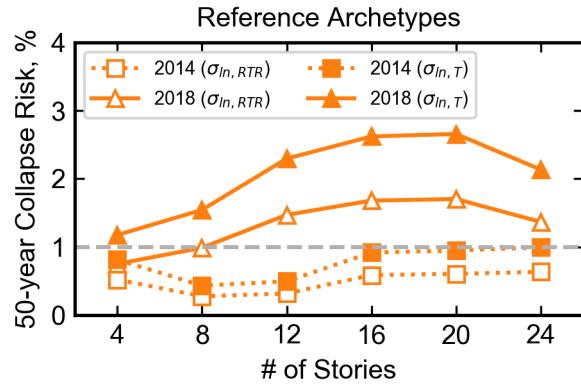
425

426 Figure 10. Probability of collapse with respect to earthquake return period for the 8-story, 16-story,
 427 and 24-story ASCE 7-16 archetypes evaluated using the (a) 2014 National Seismic Hazard Model and
 428 (b) 2018 National Seismic Hazard Model.

429 A cumulative lognormal distribution was fit using maximum likelihood estimation
 430 procedure (Baker 2015) to the conditional probabilities of collapse (expressed in terms of
 431 $S_a[T_1]$) and combined with the hazard curve to compute the annual rate of collapse using the
 432 following equation:

$$433 \quad \lambda_{collapse} = \int_x P[C|IM=x] |d\lambda_{IM}(x)| \quad (3)$$

434 where $P[C|IM=x]$ is the collapse fragility of the archetype with respect to the intensity measure
 435 (IM) of interest (in this case $S_a[T_1]$), which is computed using Equation 2 from the set of 100
 436 motions corresponding to $IM=x$. $\lambda_{IM}(x)$ is the annual rate of exceedance (λ) for $IM=x$, which
 437 can be obtained from a ground-motion hazard curve. It should be noted that cases where a
 438 maximum likelihood estimation procedure failed to converge (due to near-zero collapse
 439 probabilities), a collapse fragility function was predicted by minimizing the sum of square

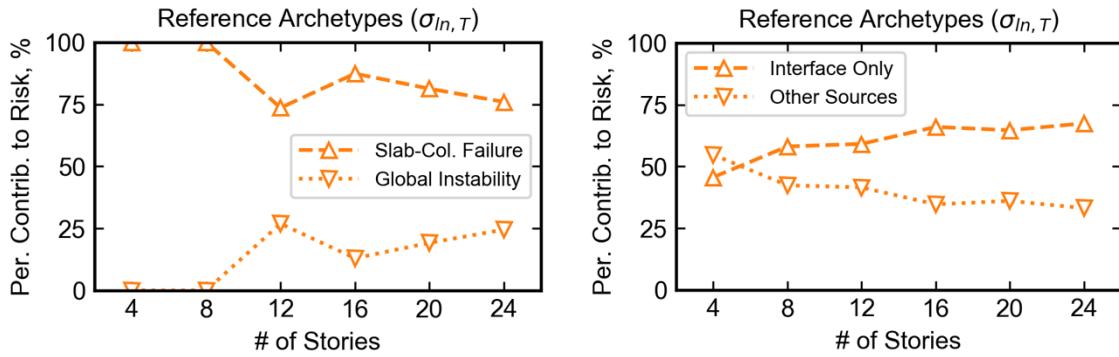

440 errors between the observed and predicted collapse probability for every intensity stripe (Baker
441 2015).

442 The collapse risk in 50 years for each archetype was computed using $\lambda_{collapse}$ assuming a
443 Poisson distribution (i.e., $1 - e^{-\lambda_{collapse} t}$, where t was taken as 50 years). Figure 11 shows the 50-
444 year collapse risk for all the reference archetypes using both the 2014 NSHM (hollow square)
445 and 2018 NSHM (hollow triangle). For all archetypes, the average 50-year collapse risk
446 computed using the 2014 and 2018 NSHM were on average equal to 0.5% and 1.3%,
447 respectively. This difference in collapse risk between the NSHM versions indicates that the
448 inclusion of basin effects is critically significant, and results in large increases in collapse risk.

449 **Accounting for Uncertainty due to Material, Design, & Modelling**

450 The probabilities of collapse shown in Figures 9 and 10 were calculated assuming that the
451 record-to-record variability was accounted for with the use of 100 motions, and the variability
452 in the drift capacity was accounted for by the variability in the slab-column rotational capacities
453 measured in experiments (Figure 8, $\sigma_{ln} = 0.12$). The resulting record-to-record variability is
454 estimated as the standard deviation in the fitted collapse fragility shown in Figure 10, and
455 denoted as $\sigma_{ln,RTR}$. However, the estimated $\sigma_{ln,RTR}$ does not account for additional uncertainties
456 related to the materials, design methods, and modelling (FEMA P695). In ASCE 7-16's
457 uniform risk target calculations, it is assumed that the total uncertainty in spectral acceleration
458 at collapse (lognormal standard deviation of a collapse fragility) is equal to 0.60, which
459 includes a contribution from the record-to-record uncertainty assumed to be equal to 0.40
460 (FEMA P695). If the two sources of uncertainty are uncorrelated, the uncertainty due to
461 materials, design methods, and modelling (FEMA P695) can then be approximated as $0.45 =$
462 $\sqrt{0.6^2 - 0.4^2}$ (Marafi et al., 2019c). Therefore, to be consistent with the ASCE 7-16
463 assumptions, the standard deviation in the fitted collapse fragility (Figure 10) was increased by
464 0.45 (i.e., $\sigma_{ln,T} = \sqrt{\sigma_{ln,RTR}^2 + 0.45^2}$).

465 Figure 11 shows that the 50-year collapse risk increased when the additional uncertainty
466 ($\sigma_{ln,T} = \sqrt{\sigma_{ln,RTR}^2 + 0.45^2}$) was taken into account. For example, the average 50-year collapse
467 risk for all reference archetypes computed using the 2018 NSHM increased from 1.3% (hollow
468 triangle) to 2.1% (solid triangle) when the additional uncertainty was considered.


469

470 Figure 11. 50-year collapse risk with respect to archetype number of stories for the seismic hazard
 471 derived from the 2014 National Seismic Hazard Model and 2018 National Seismic Hazard Model
 472 accounting for only record-to-record uncertainty ($\sigma_{ln, RTR}$) and accounting for additional material,
 473 design, and modeling uncertainty ($\sigma_{ln, T}$).

474 **Contributions to Collapse Risk**

475 The collapse mechanisms associated with global instability and punching-shear failure both
 476 contributed to the 50-year collapse risk. Figure 12a shows that at least 73% of the total 50-year
 477 collapse risk was attributable to a slab-column punching shear failure, and the remainder of the
 478 collapse risk was attributed to global instability. The contribution of the collapse risk associated
 479 with global instability increased with archetype height because large overturning moments
 480 develop from the P-Delta column when the top stories drift laterally (Figure 6). For example,
 481 the contribution to the 50-year collapse risk from global instability increased from 0% to 24%
 482 from the 4-story to 24-story reference archetypes.

483 Multiple earthquake source mechanisms contribute to the seismic hazard in the Pacific
 484 Northwest. Overall, the interface earthquakes contribute about half of the total risk (Figure
 485 12b). The contribution to the collapse risk associated with interface earthquakes increases with
 486 structural period; it is largest for the 24-story reference archetypes, corresponding to 64% of
 487 the total 50-year collapse risk (Figure 12b). This increase in collapse risk due to interface
 488 earthquakes with structural period is due to the increase in percentage contribution of interface
 489 earthquakes in the seismic hazard intensity at longer periods.

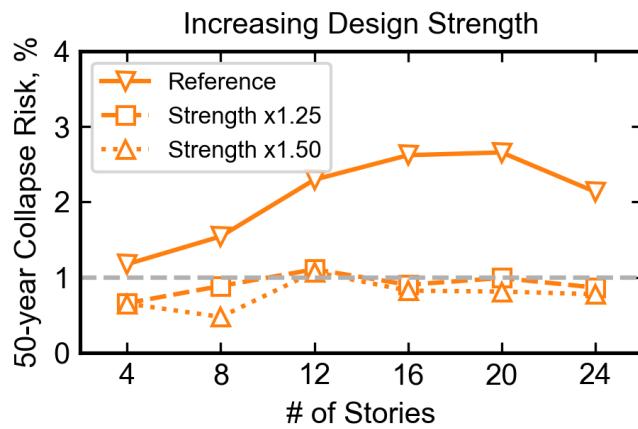
490

491 Figure 12. 50-year collapse risk deaggregation showing the (a) contribution of slab-column punching
 492 shear failure and global instability and (b) contribution of earthquake source mechanism with respect
 493 to archetype number of stories using the 2018 National Seismic Hazard Model.

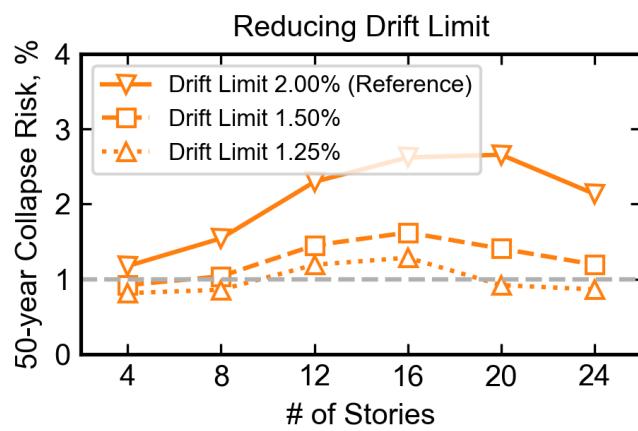
494

Design Strategies to Reduce Collapse Risk

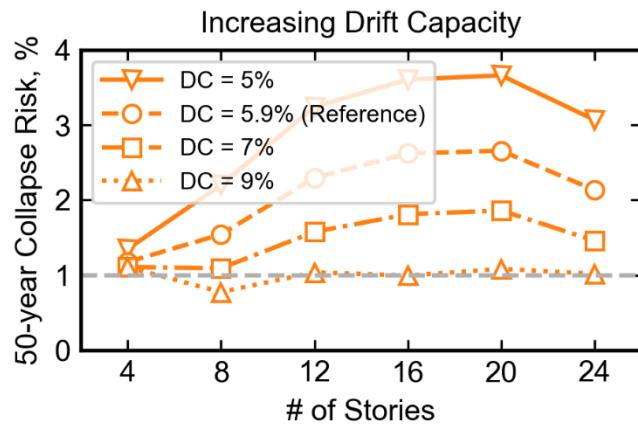
495 Engineers could adopt a variety of design strategies to account for the increase in hazard
 496 represented from the 2014 to 2018 NSHM, and reduce the 50-year collapse risk to less than
 497 1%.


498 **Design Strategy #1. Increasing Design Lateral Forces**

499 One strategy for reducing collapse risk is to increase the seismic design lateral force of the
 500 structure (i.e., structure's strength). Figure 13a shows the 50-year collapse risk for the reference
 501 archetypes redesigned using a 25% increase in ASCE 7-16 design loads (archetype ID
 502 designated with a -S125 in Table 1) and a 50% increase in design loads (designated with a -
 503 S150). Increasing the design loads by 25% resulted in a reduction in the average 50-year
 504 collapse risk from 2.1% (reference archetypes) to 0.90%. A 50% increase in design loads
 505 reduced the mean collapse risk further to 0.77%. This result is consistent with the increase in
 506 spectral acceleration values observed in the uniform hazard spectrum (UHS) derived from the
 507 2018 NSHM (Figure 2), which was on average equal to 50% for the period ranges of the
 508 buildings.

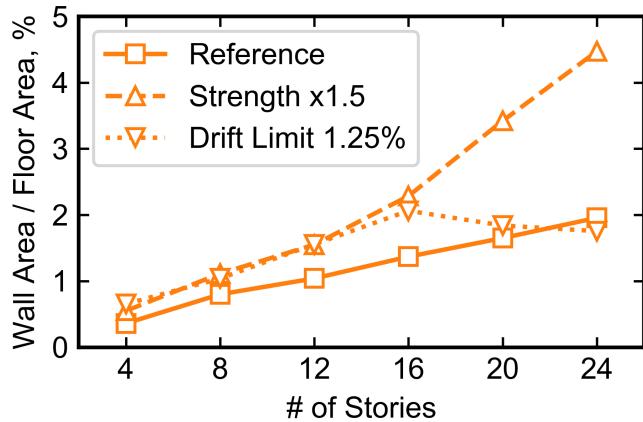

509 There are material cost and architectural consequences for increasing the seismic design
 510 lateral forces. Archetypes designed to a higher seismic force had core wall sizes and
 511 reinforcement ratios that were larger than their reference archetype counterparts. Figure 14
 512 shows that the shear wall cross-sectional area at ground level (Figure 14a) and reinforcing steel
 513 area at ground level (Figure 14b), as a percentage of the total floor area, increased for all

514 archetypes redesigned with a 50% increase in design lateral forces (-S150 archetypes). For
515 example, the shear wall area increased from 2.0% to 4.5% of the floor area for the 24-story
516 archetype. Similarly, the reinforcing steel area in the wall as a percentage of the total floor area
517 also increased, from 0.0254% to 0.0313%.

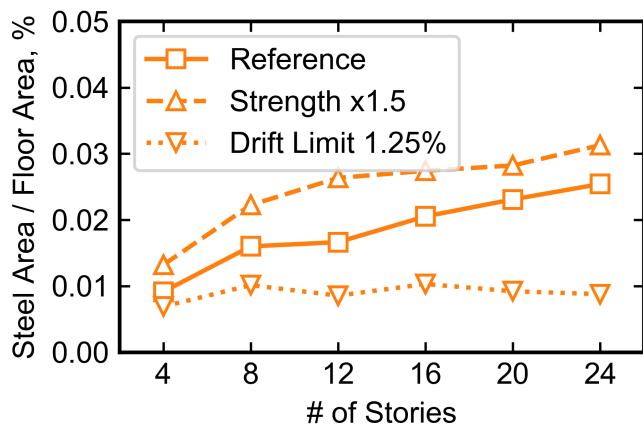

518 In core-wall buildings, the floor area located outside the core has a higher value than floor
519 area enclosed by the core. This consideration is important because one of the consequences of
520 increasing design lateral forces is an increase in floor area devoted to the concrete core. Figure
521 14c shows the percentage of floor space devoted to the concrete core, assuming a 1.83 m (6 ft)
522 gap between the flanges of the two C-shaped walls (see Figure 3). As expected, the size of the
523 concrete core increased with increased design spectral acceleration (Figure 14c). For example,
524 increasing the design force by 50% for the 24-story archetype doubled the overall core wall
525 area (from 6% to 12% of the total floor area). For archetypes taller than 8 stories, the enclosed
526 core area increased from an average of 3.9% to an average of 6.9% for the -S150 archetypes
527 relative to the reference archetypes.

528

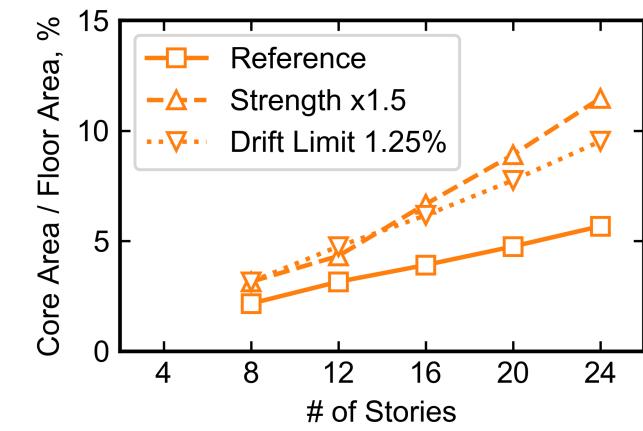
529



530


531

532 Figure 13. 50-year collapse risk with respect to archetype number of stories using the 2018 National Seismic Hazard Model for (a) various levels of archetype design lateral forces, (b) various levels of archetype design drift limits, and (c) various levels of gravity system drift capacity.


533

534

535

536

537 Figure 14. Impacts of increasing design lateral forces or reducing design drift limit on the (a)
 538 longitudinal reinforcing steel area, (b) concrete wall cross-sectional area, and (c) a concrete core wall
 539 enclosed area as a percentage of the floor area with respect to archetype number of stories.

540 Design Strategy #2. Decreasing Allowable Drift

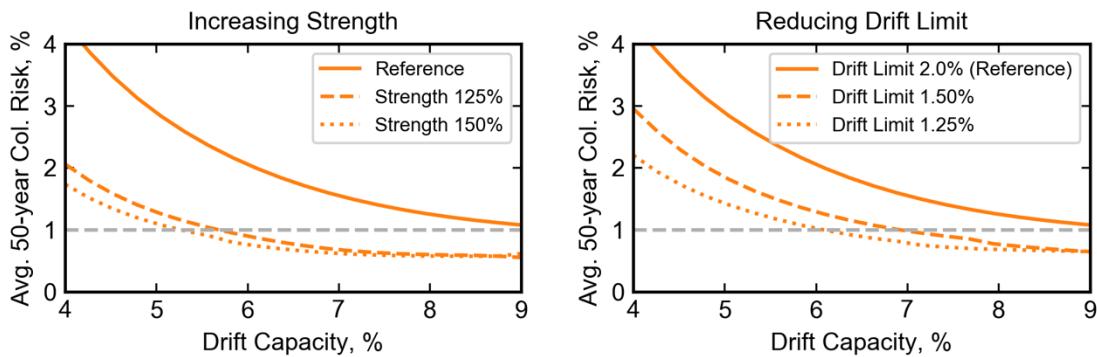
541 Increasing the stiffness of the walls is another strategy to reduce the likelihood of collapse.
 542 This increase is achievable by designing archetypes to meet a lower drift limit while

543 maintaining similar design lateral forces to the reference archetypes. Figure 13b shows the
544 collapse risks for reference archetypes (originally designed to meet a 2% limit) that were
545 redesigned to meet a lower drift limit of 1.5% (designated with a -D150) or 1.25% (-D125). As
546 expected, reducing the drift limit reduced the average 50-year collapse risk from 2.1%
547 (reference) to 1.3% and 1.0% for the 1.5% and 1.25% drift limit designs, respectively.

548 Reducing the design drift limit to 1.25% led to a 36% increase in the wall cross-sectional
549 area on average for all archetypes designed (Figure 14b). As expected, the enclosed core area
550 for archetypes larger than 8-stories also increased, by 57% on average (Figure 14c). In contrast,
551 the reinforcement area in the core wall was reduced (by 48% on average), because the increase
552 in core wall size resulted in a larger moment arm, requiring less reinforcing steel area to achieve
553 a similar strength. In addition, increasing the core size relative to the reference archetypes
554 resulted in a smaller floor area outside the core.

555 Designing for a lower drift limit is a common seismic design practice. For example, tall
556 buildings in Seattle are often initially proportioned to meet lower drift targets, so that they will
557 satisfy the performance criteria (e.g., Tall Building Initiative). Additionally, engineers often
558 design for lower drift limits to meet the requirements of non-structural components, such as
559 the building facade system (Structural Engineers Association of Washington, personal
560 correspondence, January 9th, 2018).

561 **Design Strategy #3. Increasing Drift Capacity of Gravity System**


562 To reduce the collapse risk associated with slab-column failures, engineers could increase
563 the rotational drift capacity of the slab-column connection. Zhou and Hueste (2017)
564 summarized various slab-column experiments and found that the drift capacity can be
565 increased by: (1) increasing the shear-stress capacity (Dechka, 2001), (2) increasing the length
566 of the shear-stud rails (Brown, 2003), (3) increasing the concentration of top flexural
567 reinforcement (Brown, 2003), and/or (4) increasing the nominal concrete compressive strength
568 (Park et al., 2012).

569 Figure 13c recomputes the 50-year collapse risk for a series of assumptions for the slab-
570 column connection drift capacity. As expected, increasing the drift capacity reduced the
571 collapse risk for all archetypes. For example, increasing the drift capacity from 5.9% (reference
572 archetype) to 9% (solid line in Figure 13b) decreased the 50-year collapse risk from an average
573 (for all archetypes) of 2.1% to 1.1%.

574 Increasing the drift capacity does not increase the wall area, longitudinal steel in the walls,
575 nor the enclosed floor area of the core. However, there would likely be additional costs due to
576 additional reinforcement and the decrease in constructability of the slab-column and slab-wall
577 connections to accommodate larger drift capacities.

578 **Design Strategy #4. Combining Strength or Drift Limits with Drift Capacity**

579 Engineers could also mitigate collapse risk by combining design strategies. Figure 15
580 shows the average (for all archetypes) 50-year collapse risk with respect to the gravity system
581 drift capacity for the reference archetypes and those designed for a higher lateral force (Figure
582 15a) and reduced drift limit (Figure 15b). To satisfy the target of a maximum 50-year collapse
583 risk of 1%, the drift capacities would need to exceed 9.0% if the reference archetype walls were
584 used (Figure 15a). The drift capacity would only need to be 5.7% and 5.3% for archetypes
585 redesigned with a 25% and 50% increase in design lateral forces, respectively. Alternatively,
586 engineers could also increase the drift capacities to 6.9% and 6.1% if the reference archetypes
587 were redesigned for 1.5% and 1.25% drift limits, respectively (Figure 15b).


588
589 Figure 15. Average 50-year collapse risk with respect gravity system drift capacity using the
590 archetypes with (a) higher design lateral forces and (b) archetypes designed with a reduced drift limit.

591 **Accounting for Simulated M9 CSZ Ground Motions in Collapse Risk**

592 The collapse risk assessments computed previously would change if the simulated **M9 CSZ**
593 ground-motions were used to represent the subduction interface portion of the seismic hazard
594 because: (1) the 2018 NSHMs use basin amplification factors derived from crustal earthquakes
595 (using NGA-West-2 GMMs, Bozorgnia et al., 2014) that are different from amplifications
596 expected during subduction earthquakes (Marafi et al., 2017), and (2) the target conditional

597 spectra (used for each intensity stripe in MSA) used spectral acceleration correlation functions
598 that did not necessarily consider sites located on deep basins.

599 Figure 16 compares the 50th percentile and 84th percentile for the simulated **M9** ground-
600 motions in Seattle with the lognormal mean (and mean plus one standard deviation) for the
601 BC-Hydro ground-motion model (Abrahamson et al., 2016), as modified to include basin
602 effects as per the 2018 NSHM (USGS, 2018). The basin amplification terms used in the 2018
603 NSHM are derived from GMMs for crustal earthquakes, which at periods longer than 1 s tend
604 to be smaller than the M9 simulations (Frankel et al., 2018; Marafi et al., 2019b) (and those
605 observed in subduction earthquakes in Japan [Marafi et al., 2017]).

606
607 Figure 16. Response spectra for simulated M9 CSZ ground motions for Seattle and the BC-Hydro
608 (Abrahamson et al., 2018) ground-motion model prediction considering basin effects.

609 In addition, Marafi et al. (2019b, 2019c) found that simulated ground motions for an **M9**
610 Cascadia Subduction Zone earthquake (Frankel et al., 2018) were particularly damaging for
611 structures, because: (i) the spectral shapes were more damaging than those typically considered
612 in the design of tall buildings using the MCE_R conditional spectra, and (ii) the duration of
613 shaking was much longer than crustal motions typically considered to evaluate structural
614 systems (FEMA P695). For example, the 5-95% significant durations were approximately
615 115 s for the simulated **M9** motions (Marafi et al., 2019c) in Seattle, whereas the interface
616 portion of the selected motions for the 2,475-year return period had an average significant
617 duration of about 83 s. These characteristics are not considered in the NSHM and current
618 building code provisions. Other researchers (e.g., Chandramohan, 2016) have proposed
619 adjusting the equivalent lateral force procedures used in ASCE 7 to account for the effects of
620 duration and spectral shape.

621 **Methodology for Incorporating Simulations into Collapse Risk**

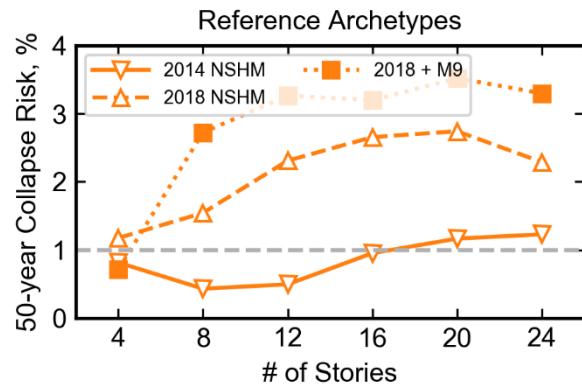
622 The portion of the collapse risk attributable interface earthquakes was recomputed using
623 the thirty simulated **M9** CSZ scenarios by Frankel et al. (2018a). The assumptions embedded
624 in these scenarios were varied to be consistent with the source variability used in the NSHM
625 logic trees for a full rupture of the Cascadia Subduction zone. The annual rate of collapse from
626 the suite of simulated **M9** earthquakes was computed as:

627
$$\lambda_{col,M9} = \lambda_{M9} \sum_{n=1}^{30} P[Col|N=n]P[N=n] \quad (4)$$

628 where λ_{M9} corresponds to the annual rate for an **M9** CSZ earthquake (i.e. reciprocal of the
629 earthquake return period, $1/526 \text{ yr}^{-1}$), and $P[Col|N=n]$ is a cumulative lognormal distribution
630 function for the probability of collapse (considering material, design, and modelling
631 uncertainty) given the n th simulated earthquake scenario, considering all thirty M9 scenarios,
632 and $P[N=n]=1/30$ is the relative probability of occurrence of the n th scenario (each of the 30
633 simulated scenarios are assumed to be equally probable). The annualized collapse risk from
634 the simulated **M9** earthquakes was then added to the portion of the annualized collapse risk
635 considering all other earthquake sources and magnitudes:

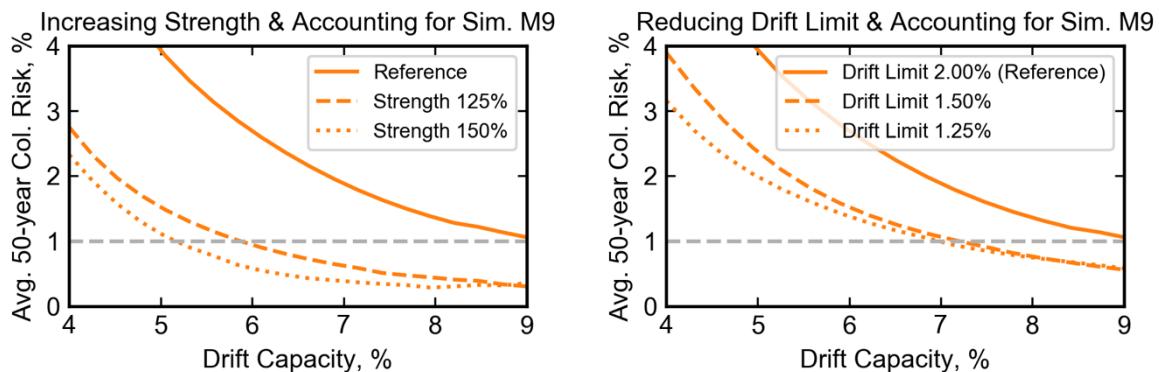
636
$$\lambda_{col,total,wM9} = \lambda_{col,total} - \lambda_{col,interface} + \lambda_{col,M9} \quad (5)$$

637 where $\lambda_{col,total}$ was computed previously using the NSHM motions and Eq. 3, $\lambda_{col,M9}$ was
638 computed using Eq 4, and $\lambda_{col,interface}$ was the deaggregated portion of the total NSHM-based
639 collapse risk ($\lambda_{col,total}$) associated with interface earthquakes (Figure 12b).


640 Note that the simulations by Frankel et al. (2018a) only considered variations of an **M9**
641 event; in reality, the NSHM assumes that the magnitude of a large interface earthquake could
642 vary between **M8.6** to **M9.3** (USGS, 2018). This paper used the **M9** simulations to represent
643 the full range of large-magnitude events.

644 **Collapse Risks for Reference and Redesigned Buildings**

645 Figure 17 shows that the average (for all reference archetypes) 50-year collapse risk
646 increased from 2.1% to 2.8% when the simulated **M9** motions were considered. For the
647 reference archetypes, the drift capacities would need to exceed 9% (from the current median
648 value of 5.9%) to satisfy the 1% in 50-year collapse risk target, as shown in Figure 18.
649 Alternately, if the archetypes were designed either with a 25% or 50% increase in design lateral
650 forces, the drift capacity would only need to be 5.9% and 5.7%, respectively (Figure 18a).


651 Redesigning the archetypes with a 1.5% and 1.25% drift limit would require mean drift
652 capacities of 7.2% and 7.0% to meet the 1% collapse target in 50-years (Figure 18b).

653

654

655 Figure 17. 50-year collapse risk with respect to # of stories considering (1) using the 2014 National
656 Seismic Hazard Model, (2) 2018 National Seismic Hazard Model, and (3) the M9 CSZ scenarios and
657 the 2018 National Seismic Hazard Model for all other earthquake sources.

658

659 Figure 18. Average 50-year collapse risk considering the simulated M9 earthquake scenarios with
660 respect to drift capacity for archetypes (a) designed with higher design lateral forces and (b) designed
661 with a reduced drift limit.

662

Conclusions

663 This study has shown that basin amplification of ground motions can greatly increase the
664 collapse risks of RC wall buildings not designed for such basin effects. The estimated collapse
665 risk further increases when the results of physics-based simulations of large-magnitude
666 interface earthquake were considered. The effectiveness and consequences of adopting several
667 design strategies to reduce the collapse risk were also investigated.

668 The inclusion of basin effects in the 2018 National Seismic Hazard Model (NSHM)
669 resulted in an increase in long-period spectral accelerations for sites located on deep basins.
670 For Seattle, this increase in spectral acceleration was particularly significant, around 50%
671 greater than the 2014 NSHM version for periods between 0.5 s to 1.5 s (Figure 2).

672 The impact of basin effects was evaluated for a series of building archetypes, ranging from
673 four to 24 stories, representing modern residential concrete wall buildings in Seattle.
674 Archetypes were developed to reflect a design that satisfies the minimum requirements by
675 ASCE 7-16 code provisions. The archetypes were only evaluated in the uncoupled wall
676 direction where maximum story drifts and collapse probabilities were computed using
677 nonlinear dynamic analysis and a slab-column fragility function that was based on rotation
678 derived from experimental data (Figure 8). The numerical models included additional
679 uncertainty due to modelling, design, and material properties that are consistent with the
680 assumptions in ASCE 7-16 provisions.

681 The results of a series of multiple stripe analyses showed that the 50-year collapse risk for
682 the reference archetypes increased from 0.7% to 1.8% on average when basin effects were
683 considered in the 2018 NSHM. To reduce the risk of collapse to the 1% target, it was shown
684 that engineers could: (a) increase the ASCE 7-16 design lateral forces by 25% (Figure 13a),
685 (b) reduce the design drift limit from 2.0% to 1.25% (Figure 13b), or (c) increase the gravity
686 system slab-column connection rotational capacity to exceed 9% (Figure 13c). Considering
687 the results from simulations of M9 CSZ earthquakes (Frankel et al., 2018a), the average risk
688 of collapse increased to 2.7% for the reference archetypes. To reach the 1% target in this case,
689 it would be necessary to make a combination of changes in the design lateral forces, allowable
690 drift ratios or rotational capacities of the slab-column connections, because the simulated
691 motions had more damaging ground-motion characteristics (Marafi et al., 2019b, c) not
692 currently reflected in building design provisions.

693 There are economic implications for these design strategies. For example, increasing the
694 design lateral forces increased the amount of concrete and reinforcing steel in the shear walls
695 and increased the floor area enclosed by the core wall (Figure 14), thus reducing the amount
696 of useable floor space outside the core. Reducing the drift limit increased the core wall size
697 and enclosed core area but reduced the total steel area. Increasing the drift capacity of the
698 gravity system would likely result in additional construction costs.

Acknowledgments

700 The authors would like to acknowledge Art Frankel and Erin Wirth for sharing the results
 701 of their simulations of M9 CSZ interface earthquakes. The earthquake engineering committee
 702 of the Structural Engineering Association of Washington is also thanked for providing
 703 feedback on the development of the building archetypes. This research was funded by the
 704 National Science Foundation under Grant No. EAR-1331412. The computations were
 705 facilitated through the use of advanced computational, storage, and networking infrastructure
 706 provided by Texas Advanced Computing Center at the University of Texas at Austin and NSF
 707 Grant No. 1520817 (NHERI Cyberinfrastructure). The authors would also like to thank the two
 708 anonymous reviewers for providing thoughtful comments and suggestions that improved the
 709 quality of the manuscript. Any opinion, findings, and conclusions or recommendations
 710 expressed in this material are those of the authors and do not necessarily reflect the views of
 711 the collaborators or sponsoring agencies.

References

713 Aagaard, B. T., Graves, R. W., Rodgers, A., Brocher, T. M., Simpson, R. W., Dreger, D., Petersson, N. A., Larsen,
 714 S. C., Ma, S., and Jachens, R. C. (2010). "Ground-Motion Modeling of Hayward Fault Scenario Earthquakes,
 715 Part II: Simulation of Long-Period and Broadband Ground Motion Modeling of Hayward Fault Scenario
 716 Earthquakes, Part II." *Bulletin of the Seismological Society of America*, 100(6), 2945–2977.

717 Abrahamson, N., Gregor, N. and Addo, K. (2016). "BC Hydro ground motion prediction equations for subduction
 718 earthquakes." *Earthquake Spectra*, 32(1), pp.23-44.

719 American Concrete Institute (ACI). (2014). "318-14: Building Code Requirements for Structural Concrete and
 720 Commentary."

721 ASCE. (2017). *Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI
 722 7-16*. American Society of Civil Engineers, Reston, VA.

723 Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J.,
 724 Darienzo, M. E., Grant, W. C., Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer,
 725 S. P., Peterson, C. D., and Reinhart, M. A. (1995). "Summary of Coastal Geologic Evidence for Past Great
 726 Earthquakes at the Cascadia Subduction Zone." *Earthquake Spectra*, 11(1), 1–18.

727 Baker, J. W. (2011). "Conditional Mean Spectrum: Tool for Ground-Motion Selection." *Journal of Structural
 728 Engineering*, 137(3), 322–331.

729 Baker, J. W. (2015). "Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis." *Earthquake Spectra*, 31(1), 579–599.

730 Baker, J. W., and Jayaram, N. (2008). "Correlation of Spectral Acceleration Values from NGA Ground Motion
 731 Models." *Earthquake Spectra*, 24(1), 299–317.

732 Bijelić, N. (2018). "Utilization of physics-based simulated earthquake ground motions for performance
 733 assessment of tall buildings." Stanford University.

734 Bozorgnia, Y., Abrahamson, N. A., Atik, L. Al, Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore,
 735 D. M., Campbell, K. W., Chiou, B. S.-J., Darragh, R., Day, S., Donahue, J., Graves, R. W., Gregor, N., Hanks,
 736 T., Idriss, I. M., Kamai, R., Kishida, T., Kottke, A., Mahin, S. A., Rezaeian, S., Rowshandel, B., Seyhan, E.,
 737 Shahi, S., Shantz, T., Silva, W., Spudich, P., Stewart, J. P., Watson-Lamprey, J., Wooddell, K., and Youngs,
 738 R. (2014). "NGA-West2 Research Project." *Earthquake Spectra*, 30(3), 973–987.

740 Brown, S. J. (2003). "Seismic Response of Slab Column Connections." Univ. of Calgary, Alberta.

741 Chandramohan, R. (2016). "Duration of earthquake ground motion: Influence on structural collapse risk and
742 integration in design and assessment practice." Stanford University.

743 Chang, S. W., Frankel, A. D., and Weaver, C. S. (2014). *Report on Workshop to Incorporate Basin Response in*
744 *the Design of Tall Buildings in the Puget Sound region, Washington.*

745 Choi, Y., Stewart, J. P., and Graves, R. W. (2005). "Empirical Model for Basin Effects Accounts for Basin Depth
746 and Source Location." *Bulletin of the Seismological Society of America*, 95(4), 1412–1427.

747 City of Seattle Department of Planning and Developments. (2015). "Alternate Design Requirements for Use of
748 Special Reinforced Concrete Shear Walls in Over Height Buildings."
749 <<http://www.seattle.gov/dpd/codes/dr/DR2015-5.pdf>> (Apr. 21, 2018).

750 City of Seattle Department of Planning and Developments. (n.d.). "DR 20-2018, Implementation of March 22,
751 2018 Basin Amplification Workshop Results." 2018.

752 Crouse, C., Jordan, T. H., Milner, K. R., Goulet, C. A., Callaghan, S., & Graves, R. W. (2018). "Site-Specific
753 MCER Response Spectra for Los Angeles Region based on 3-D Numerical Simulations and the NGA West2
754 Equations." *Proceedings of the 11th National Conference in Earthquake Engineering.*

755 Dechka, D. C. (2001). "Response of Shear-Stud-Reinforced Continuous Slab-Column Frames to Seismic Loads."
756 Univ. of Calgary, Canada.

757 Dilger, W. G., and Brown, S. J. (1995). *Earthquake Resistance of Slab-Column Connection.* Zurich, Switzerland.

758 Dilger, W., and Cao, H. (1991). "Behaviour of Slab-Column Connections under Reversed Cyclic Loading."
759 *Proceedings of the Second International Conference of High-Rise Buildings*, China, 10.

760 FEMA (Federal Emergency Management Agency). (2009). *Quantification of Building Seismic Performance
761 Factors.* Redwood, CA.

762 Frankel, A., Wirth, E., Marafi, N., Vidale, J., and Stephenson, W. (2018). "Broadband Synthetic Seismograms for
763 Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and Stochastic Synthetics,
764 Part 1: Methodology and Overall Results." *Bulletin of the Seismological Society of America*, 108(5A), 2347–
765 2369.

766 Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E., Gutiérrez-Pastor, J.,
767 Eriksson, A. T., Gràcia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T. (2012). *Turbidite Event
768 History—Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone.*

769 Graves, R., Jordan, T. H., Callaghan, S., Deelman, E., Field, E., Juve, G., Kesselman, C., Maechling, P., Mehta,
770 G., Milner, K., Okaya, D., Small, P., and Vahi, K. (2011). "CyberShake: A Physics-Based Seismic Hazard
771 Model for Southern California." *Pure and Applied Geophysics*, 168(3–4), 367–381.

772 Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K. W., Chiou, B. S.-
773 J., Idriss, I. M., Kamai, R., Seyhan, E., Silva, W., Stewart, J. P., and Youngs, R. (2014). "Comparison of
774 NGA-West2 GMPEs." *Earthquake Spectra*, 30(3), 1179–1197.

775 Haselton, C. B., Liel, A. B., Deierlein, G. G., Dean, B. S., and Chou, J. H. (2011). "Seismic Collapse Safety of
776 Reinforced Concrete Buildings. I: Assessment of Ductile Moment Frames." *Journal of Structural
777 Engineering*, 137(4), 481–491.

778 Heaton, T. J., Yang, J., and Hall, J. (2006). "Simulated performance of steel moment-resisting frame buildings in
779 the 2003 Tokachi-Oki earthquake." *Bull. Earthq. Res. Inst., Univ. Tokyo*, 81, 325–329.

780 Hueste, M. B. D., Browning, J., Lepage, A., and Wallace, J. W. (2007). "Seismic Design Criteria for Slab-Column
781 Connections." *ACI Structural Journal*, 104(4), 448–458.

782 Hueste, M. B. D., Kang, T. H.-K., and Robertson, I. N. (2009). "Lateral Drift Limits for Structural Concrete Slab-
783 Column Connections Including Shear Reinforcement Effects." *Structures Congress 2009*, American Society
784 of Civil Engineers, Reston, VA, 1–10.

785 Jalayer, F., and Cornell, C. A. (2009). "Alternative non-linear demand estimation methods for probability-based
786 seismic assessments." *Earthquake Engineering & Structural Dynamics*, 38(8), 951–972.

787 Jayaram, N., Baker, J. W., Okano, H., Ishida, H., McCann, M. W. J., and Mihara, Y. (2011). "Correlation of
788 response spectral values in Japanese ground motions." *Earthquakes and Structures*, 2(4), 357–376.

789 Jayaram, N., Lin, T., and Baker, J. W. (2011). "A Computationally Efficient Ground-Motion Selection Algorithm
790 for Matching a Target Response Spectrum Mean and Variance." *Earthquake Spectra*, 27(3), 797–815.

791 Kunnath, S. K., Heo, Y., and Mohle, J. F. (2009). "Nonlinear Uniaxial Material Model for Reinforcing Steel
792 Bars." *Journal of Structural Engineering*, 135(4), 335–343.

793 Marafi, N. A. (2018). "Impacts of an M9 Cascadia Subduction Zone Earthquake on Structures Located In Deep
794 Sedimentary Basins." University of Washington.

795 Marafi, N. A., Berman, J. W., and Eberhard, M. O. (2016). "Ductility-dependent intensity measure that accounts
796 for ground-motion spectral shape and duration." *Earthquake Engineering & Structural Dynamics*, 45(4),
797 653–672.

798 Marafi, N. A., Eberhard, M. O., Berman, J. W., Wirth, E. A., and Frankel, A. D. (2017). "Effects of Deep Basins
799 on Structural Collapse during Large Subduction Earthquakes." *Earthquake Spectra*, 33(3), 963–997.

800 Marafi, N. A., Ahmed, K. A., Lehman, D. E., and Lowes, L. N. (2019a). "Variability in Seismic Collapse
801 Probabilities of Solid and Coupled-Wall Buildings." *Journal of Structural Engineering*, In-press.

802 Marafi, N. A., Eberhard, M. O., Berman, J. W., Wirth, E. A., and D., F. A. (2019b). "Impacts of Simulated M9
803 Cascadia Subduction Zone Motions on Idealized Systems." *Earthquake Spectra*, In-press.

804 Marafi, N. A., Makdisi, A. J., Eberhard, M. O., and Berman, J. W. (2019c). "Performance of RC Core-Walls
805 during Simulated M9 Cascadia Subduction Zone Earthquake Scenarios." *Journal of Structural Engineering*,
806 In-review.

807 McKenna, F. (2016). "OpenSees." Pacific Earthquake Engineering Research Center,
808 <<http://opensees.berkeley.edu/>> (Apr. 24, 2018).

809 Megally, S., and Ghali, A. (2000). "Punching Shear Design of Earthquake-Resistant Slab-Column Connections." *ACI Structural Journal*, 97(5), 720–730.

810 Morikawa, N., and Fujiwara, H. (2013). "A New Ground Motion Prediction Equation for Japan Applicable up to
811 M9 Mega-Earthquake." *Journal of Disaster Research*, 8(5), 878–888.

812 Moschetti, M. P., Hartzell, S., Stephenson, W. J., Angster, S. J., Ramírez-Guzmán, L., and Frankel, A. D. (2017).
813 "3D Ground-Motion Simulations of Mw 7 Earthquakes on the Salt Lake City Segment of the Wasatch Fault
814 Zone: Variability of Long-Period ($T \geq 1$ s) Ground Motions and Sensitivity to Kinematic Rupture Parameters
815 3D Ground-Motion Simulations of Mw 7 Earthquakes on." *Bulletin of the Seismological Society of America*,
816 107(4), 1704–1723.

817 Park, H.-G., Kim, Y.-N., Song, J.-G., and Kang, S.-M. (2012). "Lattice Shear Reinforcement for Enhancement of
818 Slab-Column Connections." *Journal of Structural Engineering*, 138(3), 425–437.

819 Pugh, J. S., Lowes, L. N., and Lehman, D. E. (2015). "Nonlinear line-element modeling of flexural reinforced
820 concrete walls." *Engineering Structures*, 104, 174–192.

821 Rathje, E. M., Dawson, C., Padgett, J. E., Pinelli, J.-P., Stanzione, D., Adair, A., Arduino, P., Brandenberg, S. J.,
822 Cockerill, T., Dey, C., Esteva, M., Haan, F. L., Hanlon, M., Kareem, A., Lowes, L., Mock, S., and Mosqueda,
823 G. (2017). "DesignSafe: New Cyberinfrastructure for Natural Hazards Engineering." *Natural Hazards
824 Review*, 18(3), 06017001.

825 Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., Zeng, Y., Rezaeian,
826 S., Harmsen, S. C., Boyd, O. S., Field, N., Chen, R., Rukstales, K. S., Luco, N., Wheeler, R. L., Williams, R.
827 A., and Olsen, A. H. (2014). Documentation for the 2014 Update of the United States National Seismic
828 Hazard Maps.

829 USGS (United States Geological Survey). (2018). "Preliminary 2018 Update of the U.S. National Seismic Hazard
830 Model: Overview of Model, Changes, and Implications."

831 USGS (United States Geological Survey). (2019). "National Seismic Hazard Mapping Project (NSHMP) Code."
832 <<https://github.com/usgs/nshmp-haz>>.

833 Wirth, E. A., Chang, S. W., and Frankel, A. D. (2018). "2018 report on incorporating sedimentary basin response
834 into the design of tall buildings in Seattle, Washington:" *U.S. Geological Survey Open-File Report*, (1149),
835 19.

836

837 Wirth, E. A., Frankel, A. D., Marafi, N., Vidale, J. E., and Stephenson, W. J. (2018). “Broadband Synthetic
838 Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and
839 Stochastic Synthetics, Part 2: Rupture Parameters and Variability.” *Bulletin of the Seismological Society of
840 America*, 108(5A), 2370–2388.

841 Zhou, Y., and Hueste, M. B. D. (2017). “Review of test data for interior slab-column connections with moment
842 transfer.” *American Concrete Institute Special Publication*, 315, 141–166.

843

Appendix

845 Appendix Table 1. Properties of reference archetype geometry and reinforcement

Archetype	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v
S4-REF	-1 to 4	144	-	18	-	-
S8-REF	-2 to 3	144	72	24	2.00	4.00
S8-REF	4 to 6	144	72	24	1.00	1.00
S8-REF	7 to 8	144	72	24	0.25	0.25
S12-REF	-3 to 3	180	90	24	1.60	3.20
S12-REF	4 to 6	180	90	24	1.20	1.20
S12-REF	7 to 9	168	90	18	0.70	2.10
S12-REF	10 to 12	168	90	18	0.25	0.25
S16-REF	-3 to 4	204	102	28	1.50	3.50
S16-REF	5 to 8	204	102	28	1.00	1.17
S16-REF	9 to 12	188	102	20	0.60	1.28
S16-REF	13 to 16	188	102	20	0.25	0.25
S20-REF	-3 to 4	228	114	30	1.40	2.77
S20-REF	5 to 8	228	114	30	0.95	1.19
S20-REF	9 to 12	212	114	22	0.70	1.14
S20-REF	13 to 20	212	114	22	0.25	0.25
S24-REF	-3 to 4	252	126	32	1.30	2.74
S24-REF	5 to 8	252	126	32	1.10	1.47
S24-REF	9 to 12	240	126	26	0.80	1.13
S24-REF	13 to 16	240	126	26	0.35	0.25
S24-REF	17 to 24	240	126	26	0.25	0.25

848 Appendix Table 2. Properties of design strategy #1 archetype geometry and reinforcement

Archetype	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v
S4-S125	-1 to 4	156	-	20	-	-
S8-S125	-2 to 3	168	84	24	2	4
S8-S125	4 to 6	168	84	24	1.1	1.1
S8-S125	7 to 8	168	84	24	0.3	0.25
S12-S125	-3 to 3	216	108	24	1.55	3.1
S12-S125	4 to 6	216	108	24	1.25	1.25
S12-S125	7 to 9	204	108	18	0.75	2.25
S12-S125	10 to 12	204	108	18	0.25	0.25
S16-S125	-3 to 4	264	132	34	0.9	2.55
S16-S125	5 to 8	264	132	34	0.8	1.48
S16-S125	9 to 12	244	132	24	0.6	1.54
S16-S125	13 to 16	244	132	24	0.25	0.25
S20-S125	-3 to 4	312	156	40	0.68	2.25
S20-S125	5 to 8	312	156	40	0.6	1.31
S20-S125	9 to 12	284	156	26	0.6	1.16
S20-S125	13 to 16	284	156	26	0.25	0.25
S20-S125	17 to 20	276	156	22	0.25	0.25
S24-S125	-3 to 4	360	180	44	0.53	2.51
S24-S125	5 to 8	360	180	44	0.53	1.26
S24-S125	9 to 12	332	180	30	0.55	1.22
S24-S125	13 to 16	332	180	30	0.3	0.25
S24-S125	17 to 24	320	180	24	0.25	0.25
S4-S150	-1 to 4	180	-	22	-	-
S8-S150	-2 to 3	180	90	26	2	2.77
S8-S150	4 to 6	180	90	26	1.3	1.11
S8-S150	7 to 8	180	90	26	0.4	0.25
S12-S150	-3 to 3	216	108	30	1.7	3.36
S12-S150	4 to 6	216	108	30	1.35	1.69
S12-S150	7 to 9	200	108	22	0.9	1.47
S12-S150	10 to 12	200	108	22	0.35	0.25
S16-S150	-3 to 4	276	138	34	1.2	2.69

S16-S150	5 to 8	276	138	34	0.9	1.27
S16-S150	9 to 12	260	138	26	0.65	1.8
S16-S150	13 to 16	260	138	26	0.25	0.25
S20-S150	-3 to 4	324	162	44	0.82	3.02
S20-S150	5 to 8	324	162	44	0.7	1.28
S20-S150	9 to 12	296	162	30	0.7	0.87
S20-S150	13 to 16	296	162	30	0.4	0.25
S20-S150	17 to 20	280	162	22	0.25	0.25
S24-S150	-3 to 4	372	186	50	0.7	2.92
S24-S150	5 to 8	372	186	50	0.6	1.25
S24-S150	9 to 12	344	186	36	0.65	1.27
S24-S150	13 to 16	344	186	36	0.4	0.25
S24-S150	17 to 24	324	186	26	0.25	0.25

849

850

851 Appendix Table 3. Properties of design strategy #2 archetype geometry and reinforcement

Archetype	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v
S4-D150	-1 to 4	156	-	24	-	-
S8-D150	-2 to 3	168	84	24	1.25	2.5
S8-D150	4 to 6	168	84	24	0.8	0.8
S8-D150	7 to 8	168	84	24	0.25	0.25
S12-D150	-3 to 3	204	102	26	1.02	2.22
S12-D150	4 to 6	204	102	26	0.8	1.13
S12-D150	7 to 9	188	102	18	0.6	1.15
S12-D150	10 to 12	188	102	18	0.25	0.25
S16-D150	-3 to 4	240	120	32	0.72	1.93
S16-D150	5 to 8	240	120	32	0.6	0.8
S16-D150	9 to 12	212	120	18	0.5	0.96
S16-D150	13 to 16	212	120	18	0.25	0.25
S20-D150	-3 to 4	276	138	36	0.53	2.06
S20-D150	5 to 8	276	138	36	0.53	1.03
S20-D150	9 to 12	244	138	20	0.5	0.74
S20-D150	13 to 16	244	138	20	0.25	0.25
S20-D150	17 to 20	248	138	22	0.25	0.25
S24-D150	-3 to 4	300	150	40	0.5	2.18
S24-D150	5 to 8	300	150	40	0.5	1.09
S24-D150	9 to 12	272	150	26	0.55	0.78
S24-D150	13 to 16	272	150	26	0.35	0.25
S24-D150	17 to 24	260	150	20	0.25	0.25
S4-D125	-1 to 4	168	-	28	-	-
S8-D125	-2 to 3	180	90	24	0.97	2.55
S8-D125	4 to 6	180	90	24	0.65	0.85
S8-D125	7 to 8	180	90	24	0.25	0.25
S12-D125	-3 to 3	228	114	28	0.55	1.68
S12-D125	4 to 6	228	114	28	0.5	1.04
S12-D125	7 to 9	204	114	16	0.5	0.85
S12-D125	10 to 12	204	114	16	0.25	0.25
S16-D125	-3 to 4	264	132	32	0.5	2.37

S16-D125	5 to 8	264	132	32	0.5	1.19
S16-D125	9 to 12	232	132	16	0.5	0.85
S16-D125	13 to 16	232	132	16	0.25	0.25
S20-D125	-3 to 4	300	150	24	0.5	1.31
S20-D125	5 to 8	300	150	24	0.5	0.65
S20-D125	9 to 12	292	150	20	0.5	0.74
S20-D125	13 to 16	292	150	20	0.3	0.25
S20-D125	17 to 20	284	150	16	0.25	0.25
S24-D125	-3 to 4	336	168	20	0.5	2.13
S24-D125	5 to 12	336	168	20	0.5	1.07
S24-D125	13 to 16	336	168	20	0.25	0.25
S24-D125	17 to 24	328	168	16	0.25	0.25

852

853

854 Appendix Table 4. Properties of 4-story planar wall archetypes

<i>Archetype</i>	<i>Stories</i>	<i>l_{be}</i> (in)	<i>ρ_{l,be}</i>
S4-REF	-1 to 2	50	0.035
S4-REF	2 to 4	42	0.023
S4-S125	-1 to 2	66	0.032
S4-S125	2 to 4	66	0.020
S4-S150	-1 to 2	74	0.027
S4-S150	2 to 4	74	0.018
S4-D150	-1 to 2	38	0.027
S4-D150	2 to 4	38	0.017
S4-D125	-1 to 2	42	0.019
S4-D125	2 to 4	34	0.015

855