

1 **Impacts of M9 Cascadia Subduction Zone Earthquake and Seattle Basin on**
2 **Performance of RC Core-Wall Buildings**

3 Nasser A. Marafi¹, Andrew J. Makdisi², Marc O. Eberhard³, and Jeffrey W. Berman⁴

4 The performance of tall reinforced-concrete core building archetypes in Seattle was
5 evaluated for 30 simulated scenarios of an **M9** Cascadia Subduction Zone interface
6 earthquake. Compared with typical MCE_R motions, the median spectral accelerations of
7 the simulated motions were higher (15% at 2s), and the spectral shapes were more
8 damaging, because the Seattle basin amplifies ground-motion components in the period
9 range of 1.5 s to 6 s. The National Seismic Hazard Maps do not explicitly take into account
10 this effect. The significant durations were much longer (~115 s) than typical design motions
11 because the earthquake magnitude is large. The performance of 32 building archetypes
12 (ranging from 4 to 40 stories) was evaluated for designs that barely met the minimum
13 ASCE 7-10 and 7-16 code requirements, and for more rigorous designs that were typical
14 of current tall building practice in Seattle. Even though the return period of the **M9**
15 earthquake is only 500 years, the maximum story drifts for the **M9** motions were on average
16 11% larger and more variable than those for the MCE_R design motions that neglect basin
17 effects. Under an **M9** event, the collapse probability for the code-minimum archetypes
18 averaged 33% and 21% for the ASCE 7-10 and 7-16 minimum-designed archetypes,
19 respectively. In contrast, the collapse probability for the archetypes designed according to
20 current tall building practice in Seattle were lower and averaged 19% and 11% for the
21 ASCE 7-10 and 7-16 archetypes, respectively. These collapse probabilities for an **M9**
22 earthquake, which has a return period of about 500 years, exceeded the target 10% collapse
23 probability in the MCE_R, which has a longer return period.

24 *Keywords: Cascadia subduction zone, reinforced concrete walls, nonlinear dynamic analysis, basin effects, long*
25 *duration motions*

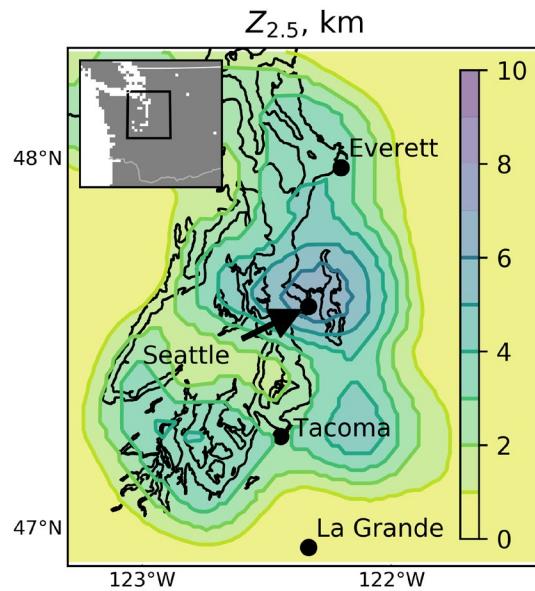
¹Postdoctoral Research Associate, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

²Graduate Research Assistant, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

³Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

⁴Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

Introduction

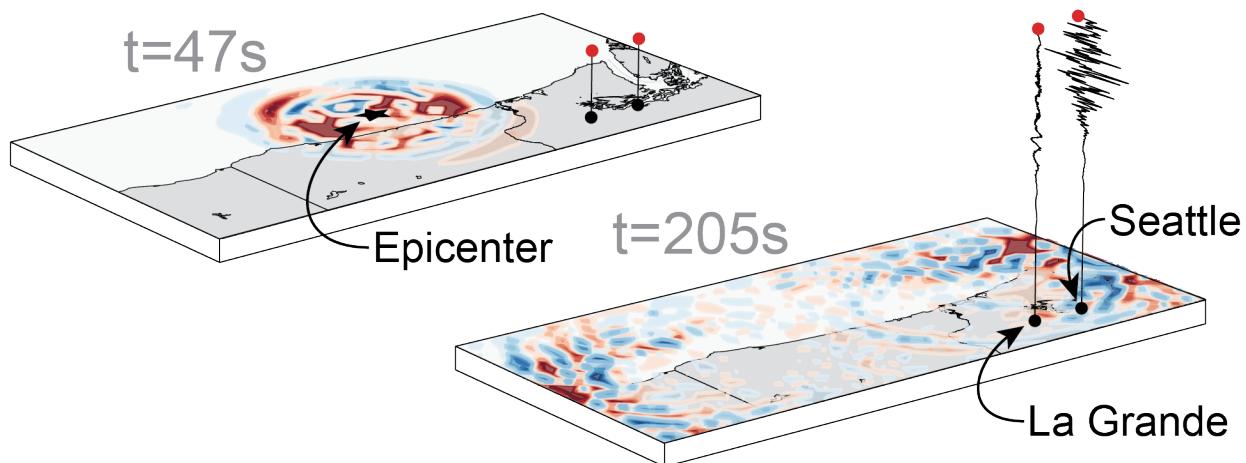

27 Geologic evidence indicates that the Cascadia Subduction Zone (CSZ) is capable of
28 producing large-magnitude, megathrust earthquakes at the interface between the Juan de Fuca and
29 North American plates (Atwater et al. 1995, Goldfinger et al. 2012). These events are expected to
30 have an average return period of about 500 years (Petersen et al. 2002), which is considerably less
31 than the 2475-year return period for the Maximum Considered Earthquake (MCE), or the
32 approximately 2000-year return period for risk-adjusted MCE (MCE_R) in Seattle. The most recent
33 large-magnitude, interface earthquake on the CSZ occurred in 1700 (Atwater et al. 1995), and
34 according to Petersen et al. (2002), there is a 10-14% chance that a magnitude-9 (**M9**) earthquake
35 will occur along the Cascadia Subduction Zone within the next 50 years.

36 There has been much uncertainty about the characteristics of the ground motions that would
37 result from a large-magnitude, interface CSZ earthquake, because no seismic recordings are
38 available from such an event. To compensate for the paucity of recorded interface events, Frankel
39 et al. (2018a) simulated the generation and propagation of **M9** CSZ earthquakes for thirty rupture
40 scenarios, and Wirth et al. (2018) evaluated the sensitivity of the generated motions to the rupture
41 model parameters. These scenarios represent **M9** full-length ruptures of the CSZ, with variations
42 in the hypocenter location, inland extent of the rupture plane, and locations of high stress-drop
43 subevents along the fault plane. The extent of the down-dip rupture was varied to be consistent
44 with the logic tree branches for a full-length rupture of the CSZ used in the U.S. National Seismic
45 Hazard Maps (NSHM, Peterson et al. 2014).

46 For frequencies up to 1 Hz, the motions were generated using a finite-difference code (Liu
47 & Archuleta 2002) and a 3D seismic velocity model (Stephenson et al. 2017) that reflects the
48 geological structure of the CSZ and the Puget Lowland region. This region is founded on glacial

49 deposits that overlay sedimentary rocks, which fill the troughs between the Olympic and the
50 Cascade mountain ranges. The model includes several deep sedimentary basins within the Puget
51 Lowland region, including the Seattle basin, which is the deepest. The current NSHM does not
52 explicitly account for the Seattle basin.

53 A one-dimensional measure of the basin depth is the depth to very stiff material with a
54 shear-wave velocity (V_S) of 2.5 km/s, denoted as $Z_{2.5}$. Campbell and Bozorgnia (2014) used this
55 measure of basin depth in their ground-motion model (GMM) for crustal earthquakes. Figure 1
56 shows the variation of $Z_{2.5}$ within the Puget Lowland region, in which $Z_{2.5}$ ranges from 4 to 5 km
57 over a wide area. Seattle and its nearby suburbs are located above the Seattle basin, a region where
58 $Z_{2.5}$ reaches values of up to 7 km. The map also shows that there are shallower basins near Everett
59 (north of Seattle) and Tacoma (south of Seattle). In contrast, $Z_{2.5}$ is approximately 0.5 km for a
60 reference outside-basin location, La Grande, WA.



61
62 *Figure 1. Map of $Z_{2.5}$ for the Puget Lowland Region*

63 For frequencies above 1 Hz, the motions were generated with a stochastic procedure
64 (Frankel, 2009) assuming a generic rock site profile (Boore and Joyner 1997) without considering

65 basin effects. To create a broadband motion, the low-frequency and high-frequency components
66 of the simulated motions were combined using third-order, low-pass and high-pass Butterworth
67 filters, respectively, at 1 Hz.

68 Figure 2 illustrates the results of one rupture scenario with an epicenter off the coast of
69 Oregon. The figure illustrates the velocity field of the seismic wave propagation across the Pacific
70 Northwest, as well the velocity time history for two locations in Washington State (Seattle and La
71 Grande), at 47 s and 205 s after the initial earthquake rupture. Each scenario generated 500,000
72 motions on a 1-by-1 km grid spacing for a region ranging from Northern California to Vancouver
73 Island, and from off the West Coast to as far inland as the Cascade mountains. High-resolution (1-
74 by-1 km for the Puget Sound region) and low-resolution (20-by-20 km for the entire model)
75 ground-motion datasets are publicly available (<https://doi.org/10.17603/DS2WM3W>) from
76 DesignSafe, a data archive supported by the National Science Foundation (Frankel et al. 2018b).

77
78 *Figure 2. M9 CSZ earthquake scenario showing velocity time history for Seattle and La Grande,*
79 *Washington at 47s and 205s after the initial earthquake rupture.*

80 This paper evaluates the impact of the simulated motions on the response of reinforced
81 concrete core wall building archetypes designed for Seattle using ASCE 7-10 (2013) and ASCE
82 7-16 (2017) provisions with prescriptive and performance-based design approaches. For each code

83 version, one archetype performance group was developed that represents designs that barely meet
84 the minimum code requirements. A second archetype performance group was developed that
85 reflects typical practice for tall buildings in Seattle, i.e., buildings over 73m (240ft), which includes
86 performance-based design considerations. The response of these archetypes to the simulated
87 motions are compared with the response to ground motions selected and scaled to match the risk-
88 adjusted MCE conditional mean spectrum (CMS) for crustal, intraslab, and interface earthquake
89 sources that contribute to the seismic hazard in Seattle. Uncertainty in the drift capacity of the
90 gravity slab-column connections are taken into account in the estimate of the archetype's collapse
91 vulnerability. Finally, collapse probabilities under the **M9** CSZ scenarios are compared with the
92 motions representing the MCE_R earthquakes, which target a 10% probability of collapse (e.g.,
93 FEMA P695, Luco et al., 2007).

94 **Spectral Acceleration of the M9 Ground Motions**

95 In the United States, equivalent-linear seismic design loads (e.g., ASCE 7-10, ASCE 7-16,
96 AASHTO 2017) are derived from the spectral acceleration (for a damping ratio of 5%) at the
97 fundamental period of a structure. Figure 3a shows the spectral acceleration (S_a) in the orientation
98 (direction) corresponding to the maximum spectral response ($S_{a,ROTD100}$) versus period for the 30
99 scenarios for a site in downtown Seattle. At each period, the geometric mean of $S_{a,ROTD100}$ is
100 denoted with a solid black line, and the dashed black lines denote one lognormal standard deviation
101 above and below the mean. For comparison, the design spectrum corresponding to the ASCE 7-16
102 risk-adjusted maximum considered earthquake (ASCE MCE_R) (assuming Site Class C) is shown
103 with a solid red line.

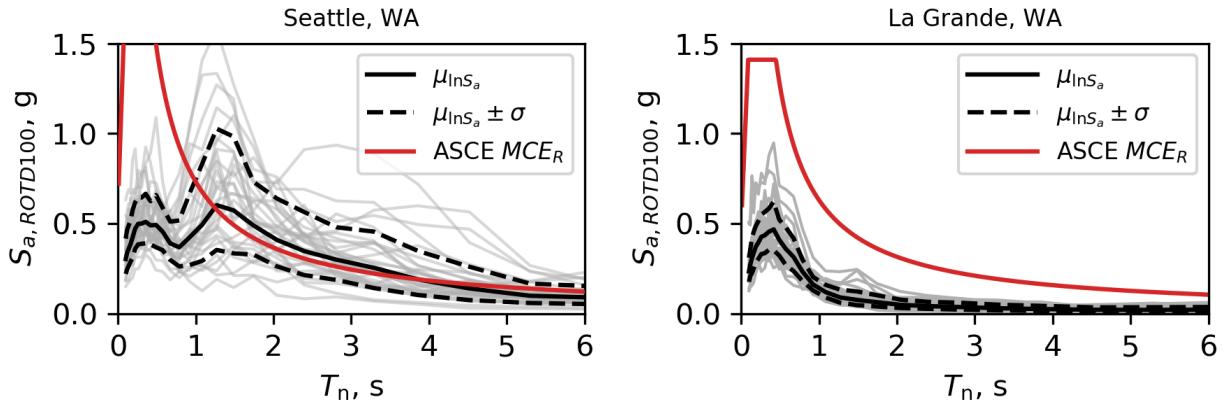


Figure 3. Maximum direction spectral acceleration for all 30 M9 simulations for (a) Seattle and (b) La Grande. Response spectra corresponding to the risk-targeted maximum considered earthquake for Seattle and La Grande (using the 2014 USGS NSHM) are shown in red.

For Seattle, the spectral accelerations of the M9 simulations are smaller than the MCE_R values for periods below 1 s. However, for periods ranging from 1.5 to 4 s, the geometric mean of the M9 spectral accelerations are slightly above the MCE_R values, and the spectral accelerations for many of the simulated motions greatly exceed the MCE_R values. For example, 67% (20 of 30) of the motions exceed the MCE_R values at a period of 2.0 s. This exceedance is important, because the return period for the M9 Cascadia event (~500 years) is much shorter than that of the MCE_R (~2000-year return for Seattle). In addition, M9 interface earthquakes represent only part of the seismic hazard in Seattle, which has large contributions from the Seattle Fault and deeper intraslab events. For example, at a period of 2.0 s, the CSZ full-rupture earthquake (M8.8 to M9.3) contributes only 43% of the total seismic hazard.

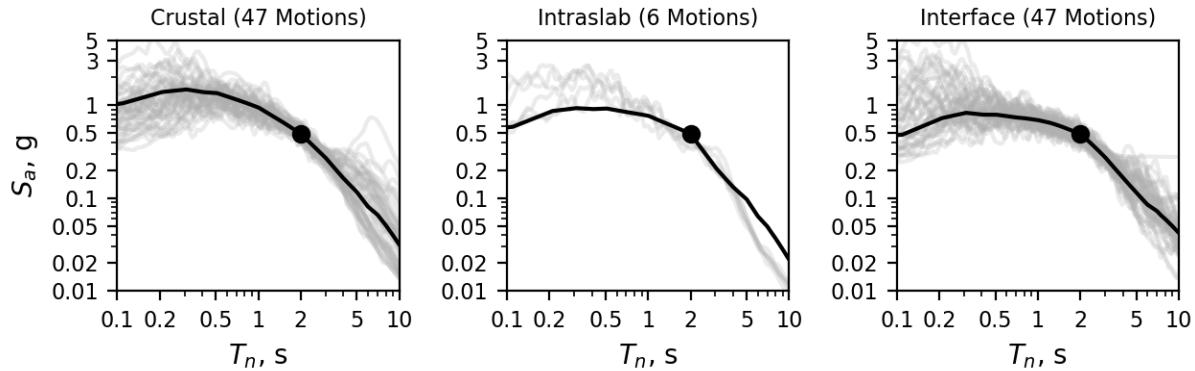
Figure 3b shows the same information as Figure 3a but for a reference site 73 km south of Seattle (near La Grande, Washington). This site was selected because La Grande and Seattle have similar values of closest distance to the fault-rupture plane and similar values of the shear-wave velocity in the upper 30 m of the site (V_{S30}). As a result, ground-motion models with no explicit basin terms (e.g., Abrahamson et al. 2016) predict similar spectral accelerations for both locations

123 for an interface earthquake. For periods greater than ~ 0.7 s, the values of S_a for the simulated
124 motions are much lower for La Grande than for Seattle. The differences between the spectral
125 accelerations of the simulated motions for Seattle and La Grande (Figure 3) can be attributed
126 mainly to the effects of the deep sedimentary basin that underlies Seattle (Marafi et al. 2019b).

127 **Spectral Shape of the M9 Ground Motions**

128 Spectral acceleration does not by itself adequately characterize the effects of ground
129 motions on damage. Numerous researchers have found that the shape of the spectrum at periods
130 near and larger than the fundamental period of the structure affects the response of nonlinear
131 systems, because the fundamental period of a structure elongates as damage progresses. For
132 example, Haselton et al. (2011a), Eads et al. (2015), and Marafi et al. (2016) have shown that
133 spectral shape influences collapse probabilities for structures. Similarly, Deng et al. (2018)
134 developed an intensity measure that accounts for the effects of spectral shape on the ductility
135 demand of bilinear SDOF systems.

136 Marafi et al. (2016) developed a measure of spectral shape, SS_a , that accounts for the
137 differences in period elongation between brittle and ductile structures, and between low and high
138 deformation demands. This measure correlated well with collapse performance for recorded
139 crustal and subduction earthquake ground motions. SS_a is defined using the integral of the ground-
140 motion response spectrum (damping ratio of 5%) between the fundamental period of the building
141 (T_n) and the nominal elongated period (αT_n). To make SS_a independent of the spectral amplitude
142 at the fundamental period, the integral is normalized by the area of a rectangle with a height of
143 $S_a(T_n)$ and width of $(\alpha-1)T_n$.

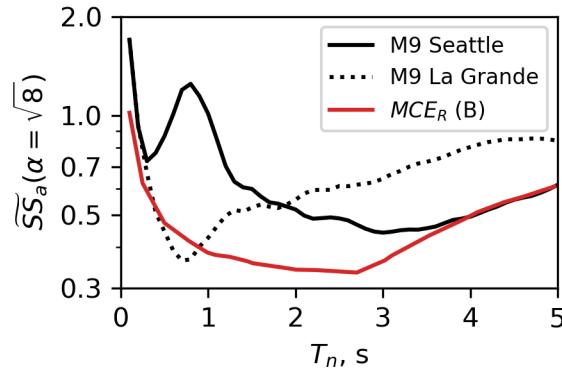

144
$$SS_a(T_n, \alpha) = \frac{\int_{T_n}^{\alpha T_n} S_a(T) dT}{S_a(T_n)(\alpha-1)T_n} \quad (1)$$

145 where αT_n accounts for the period elongation of the structure. For evaluating the likelihood of
146 exceeding a target displacement ductility, μ_{target} , the upper limit of the period range (αT_n) is taken
147 as equal to the period derived from the secant stiffness; therefore α is taken as $\sqrt{\mu_{target}}$. For
148 evaluating the likelihood of collapse, α is taken as $\sqrt{\mu_{50}}$, where μ_{50} is the displacement ductility at
149 a strength loss of 50% (Marafi et al., 2019a). For two ground motions with similar spectral
150 accelerations that cause yielding, the ground motion with the larger values of SS_a will likely be
151 more damaging than the motion with smaller values of SS_a , because the spectral accelerations are
152 larger at periods above the initial elastic period of the structure.

153 To compare the spectral shape of the **M9** motions with those of motions used in current
154 practice for tall buildings (PEER, 2017), conditional mean spectra (Baker 2011) were developed
155 for the MCE_R , denoted as MCE_R CMS. The MCE_R CMS is meant to represent the expected ground
156 motion response spectrum conditioned on the occurrence of a target S_a in the MCE_R at the
157 fundamental period of a structure. To be consistent with current practice in Seattle for tall buildings
158 (Chang et al. 2014), these conditional mean spectra were scaled to include basin amplifications as
159 calculated with the Campbell and Bozorgnia (2014) basin term assuming a value of $Z_{2.5} = 7$ km
160 for Seattle. The resulting basin amplification factors applied to the CMS ranged from 1.23 at a
161 period of 0.01s to 1.74 at a period of 8 s.

162 As an example, Figure 4 shows the response spectra for 100 motions selected and scaled
163 to the MCE_R CMS at 2.0 secs, adjusting from geometric mean to maximum direction ground
164 motions (Shahi and Baker 2011) and accounting for basin effects with amplification factors for
165 crustal earthquakes (Campbell and Bozorgnia 2014). Crustal, intraslab and interface motions were
166 included in each ground motion set in proportion to their contribution to the overall seismic hazard
167 at each period. At a period of 2.0 seconds, 47, 6, and 47 motions were used to represent the

168 contribution of the crustal, intraslab and interface events, respectively. Marafi (2018) provides
169 details of the process used to select and scale these motions.

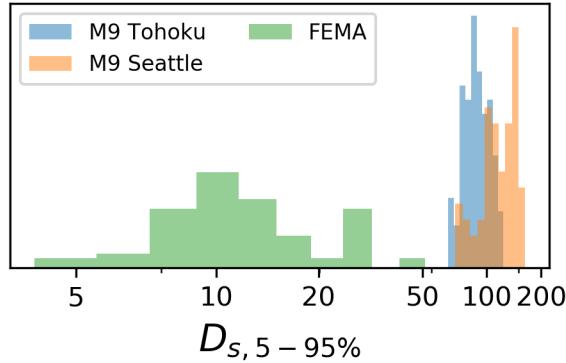

170
171 *Figure 4. Ground motions selected and scaled to the target 2475-year return conditional mean*
172 *spectrum at 2.0 s for crustal, intraslab, and interface earthquakes.*

173 For a downtown Seattle site, Figure 5 compares the geometric mean of SS_a of the 30
174 simulated M9 ground motions with that of the 100 MCE_R CMS motions. The spectral shapes for
175 the Seattle M9 motions are more damaging (larger SS_a) up to a period of about 4 s. The differences
176 are particularly large in the range of 0.5 s to 3.0 s. These differences are consistent with the
177 response spectra shown in Figure 3. For example, the spectral acceleration in Seattle reaches a
178 maximum at a period of about 1.5 s, so SS_a is above 1.0 near a period of 1.0 s. Periods above 1.5
179 s have decreasing spectral accelerations, which leads to values of SS_a below 1.0. The M9 La
180 Grande motions have even more damaging shapes at long periods, but that difference is
181 unimportant because the spectral accelerations are low for that location.

182 Duration of M9 Ground Motions

183 The duration of the ground motion can also affect structural response (e.g., Marsh and
184 Giannotti 1995, Bommer et al. 2004, Raghunandan et al. 2015, Chandramohan et al. 2016).
185 Bommer et al. (2004) found that the effects of duration are pronounced in structures that undergo

186 strength and stiffness degradation with cyclic loading. Hancock and Bommer (2007), and
 187 Chandramohan et al. (2016) found that significant duration, D_s , correlated well with structural
 188 collapse, and this measure has the advantage of being independent of ground-motion amplitude.



189
 190 *Figure 5. SS_a ($\alpha = \sqrt{8}$) with respect to period for M9 Seattle and motions selected to match the*
 191 *MCE_R CMS considering basins, denoted as MCE_R (B).*

192 Figure 6 shows the frequency histograms (in log-scale) for D_s computed using the 5-95%
 193 Arias intensity time interval ($D_{s,5-95\%}$) for the 30 simulated M9 CSZ motions for Seattle, 66 motions
 194 measured during the M9 Tohoku earthquake, and 78 motions from FEMA P695 (2008) (typical of
 195 design motions for crustal earthquakes). The geometric mean of $D_{s,5-95\%}$ for the simulated M9 CSZ
 196 ground motions for Seattle is 115s, which is nearly 30% larger than that of the M9 Tohoku
 197 earthquake (89 s) motions, considering stations between 100 and 200 km from the earthquake
 198 source. Both of these durations are much longer than the FEMA P695 (2008) ground motions,
 199 which have a geometric mean of 13s.

200 The log-normal standard deviation of $D_{s,5-95\%}$ was 0.21 for the M9 Seattle motions, 0.15
 201 for the Tohoku earthquake, and 0.51 for the FEMA motions. These differences are consistent with
 202 expectations. The standard deviation is smaller for the Tohoku earthquake than the simulations
 203 because the Tohoku motions were recorded for a single event, whereas the simulated motions were
 204 derived from 30 scenarios. The standard deviation is largest for the FEMA motions because this

205 set is comprised of motions from distinct events with a wide range of magnitudes and source-to-
206 site distances.

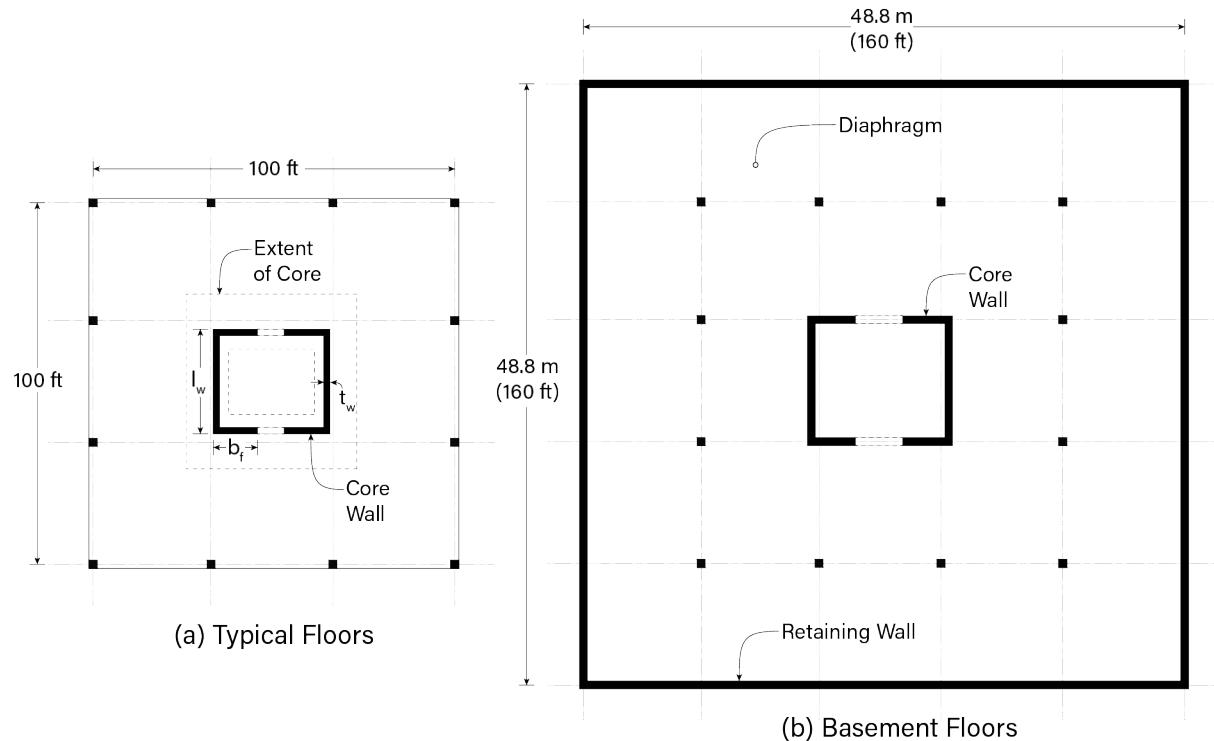
207
208 *Figure 6. Frequency histograms of $D_s, 5-95\%$ for FEMA P695 motions, M9 Tohoku motions*
209 *recorded at stations with a source-to-site distance between 100 and 200 km, and M9 CSZ*
210 *Simulated motions in Seattle.*

211 Archetype Development

212 The effects of the M9 simulated motions were evaluated for 32 modern, mid- and high-rise
213 reinforced concrete core-wall archetypal residential buildings, ranging from 4 to 40 stories. To
214 reflect current practice in Seattle, all of the archetypes were designed and detailed as special
215 reinforced concrete shear walls (Chapter 18 of ACI 318-14), with a seismic force-reduction factor
216 (R) of 6. The archetypes were developed with the assistance of members of the Earthquake
217 Engineering Committee of the Structural Engineers Association of Washington.

218 ARCHETYPE LAYOUT

219 Figure 7a shows typical floor plans for the archetypes. The floor plate was 30.5 m (100 ft.)
220 long by 30.5 m (100 ft.) wide with three 9.15 m (30 ft.) bays of slab-column gravity framing in
221 each orthogonal direction. The 4-story archetypes had two planar walls in each orthogonal
222 direction. Archetypes with 8 stories or more used a central core-wall archetype that was
223 symmetrical in both directions, in which one direction used two uncoupled C-shaped walls,


224 whereas the other direction used coupled C-shaped walls. As is typical for residential buildings,
225 the 4- and 8-story archetypes included 2 and 3 basement levels, respectively, and the taller
226 archetypes had 4 basement levels. The basements were assumed to have plan dimensions of 48.8
227 m x 48.8 m (160 ft x 160 ft) (Figure 7b).

228 **PERFORMANCE GROUPS**

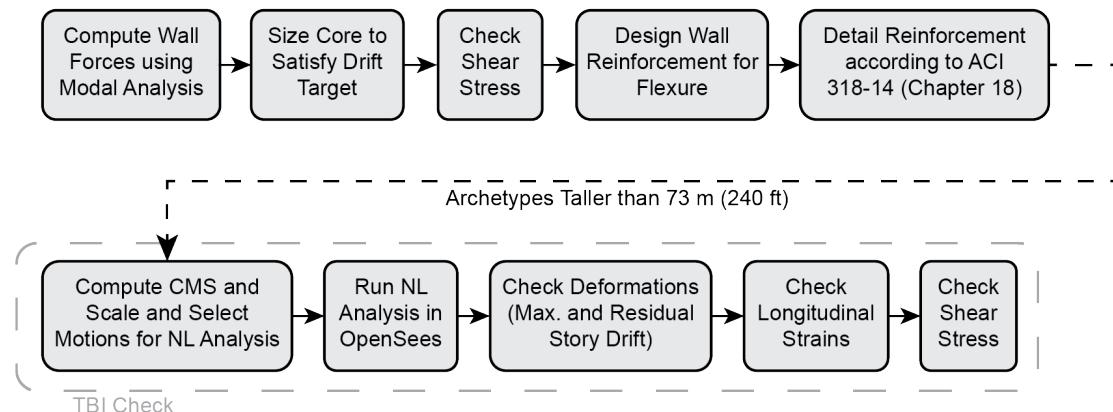
229 Four strategies were implemented (resulting in four performance groups) to design a total
230 of 32 archetypical buildings. Six buildings, ranging from 4 to 24 stories, were designed to barely
231 meet the minimum prescriptive, equivalent lateral-force (ELF) requirements of ASCE 7-10 (2013),
232 following the modal response spectrum analysis (MRSA) procedure. Another six buildings were
233 designed similarly but following the minimum requirements of ASCE 7-16. For both of these
234 performance groups, the maximum allowable drift was 2% for the design earthquake loads, and
235 the flexural demand-to-capacity ratio was near 1.0 at the ground floor. These sets of archetypes
236 are referred to as “code-minimum” performance groups.

237 The City of Seattle (Director’s Rule 5, 2015) requires that buildings with a height above
238 73 m (240 ft), which corresponds to about 24 stories in a residential building, be evaluated with
239 performance-based design (PBD) procedures. To reflect current practice, 10 buildings, with 4 to
240 40 stories, were preliminarily designed to satisfy: (a) a stricter drift target of 1.25% under the
241 ASCE 7-10 design loads using MRSA, and (b) a higher flexural demand-to-capacity ratio of 1.25.
242 For buildings 24-stories and taller, nonlinear analysis was performed on the resulting designs to
243 check the strain, force, and drift limits of the Tall Building Initiative (2017) guidelines (TBI). In
244 many cases, the nonlinear checks were satisfied without further modifying the archetypes, but in
245 a few cases, the flexural reinforcement ratio was increased (especially in the upper stories) to

246 satisfy the TBI strain limits. Another 10 buildings were designed similarly, using the ASCE 7-16
247 provisions. These two sets of archetypes are referred to as “code-enhanced” performance groups.

248
249 *Figure 7. Archetype typical floor plans for the (a) typical floors and (b) basements.*

250 DESIGN LOADS


251 The seismic weight was assumed to consist of the weight of the core wall, the weight of
252 the gravity system, and the superimposed dead loads (e.g., mechanical equipment, ceilings and
253 partitions). The gravity system and superimposed loads were modeled as a uniform load of 6.2 kPa
254 (130 psf), 11.0 kPa (230 psf), 7.4 kPa (155 psf) for typical, ground, and basements levels,
255 respectively. Uniformly distributed live loads of 2.4 kPa (50 psf), 4.8 kPa (100 psf), 1.9 kPa (40
256 psf) for typical, ground, and basements levels, respectively, were assumed in the ASCE-7 load
257 combinations.

258 All of the archetypes were assumed to be founded on glacially-compacted sediments that
259 are common in the Puget Sound region. In Seattle, this material typically has a shear-wave velocity

260 (V_{S30}) near 500 m/s, which corresponds to NEHRP Site Class C (BSSC 2009). For the ASCE 7-10
 261 archetypes, the design short-period spectral acceleration, S_{DS} , was 0.94g, and the 1-s spectral
 262 acceleration, S_{D1} , was 0.42 g. The design accelerations for the ASCE 7-16 archetypes were 19%
 263 and 12% higher, respectively ($S_{DS} = 1.12$ g; $S_{D1} = 0.49$ g). This increase was attributable to changes
 264 in seismic hazards maps (NSHM) and site-amplification factors (FEMA 2015). All archetypes
 265 were assumed to fall into occupancy Risk Category II, which corresponds to Seismic Design
 266 Category D.

267 **ASCE-7 AND ACI 318 DESIGN PROCESS**

268 The design process for all of the archetypes is summarized in Figure 8. The seismic forces
 269 induced in the core wall were computed using MRSA, in which the total seismic base shear was
 270 determined using ASCE 7 §12.8. Note that the MRSA procedure differed between the two
 271 standards; ASCE 7-10 permits a 15% reduction in the lateral-design loads under MRSA, whereas
 272 ASCE 7-16 does not.

273
 274 *Figure 8. Archetype design flow chart*

275 All core-wall archetypes were designed and detailed according to Chapter 18 in ACI 318-
 276 14. The core wall concrete was assumed to have a specified compressive strength (f'_c) of 55.2 MPa
 277 (8,000 psi) and reinforced with ASTM A706 steel, which has a nominal yield stress (f_y) of 414

278 MPa (60 ksi). The sizes and thicknesses of the wall and the reinforcement layout was determined
279 by meeting the following criteria:

280 (1) Satisfy drift limit (using MRSA, according to ASCE 7-10 §12.12) assuming an effective
281 stiffness of $0.5E_c I_g$, as permitted in ACI 318-14. This drift limit was 2.0% for the code-minimum
282 performance group, whereas it was 1.25% for the code-enhanced performance group, as
283 recommended by the archetype development committee.

284 (2) Check that the base-shear stress demand resulting from the MRSA demands are less
285 than $0.33\sqrt{f'_c}$ MPa ($4\sqrt{f'_c}$ psi) for the code-minimum design, and are less than $0.17\sqrt{f'_c}$ MPa ($2\sqrt{f'_c}$
286 psi) in the code-enhanced designs, and

287 (3) Provide adequate flexural strength, such that $\phi M_n > M_u$ where $\phi = 0.9$; M_n corresponds
288 to the nominal flexural strength (considering interaction between axial load and flexural strength)
289 as per ACI, and M_u is the moment demand as per ASCE 7. The demand-to-capacity ratio ($M_u/\phi M_n$)
290 was approximately 1.0 for the code-minimum performance groups and 0.8 for the code-enhanced
291 groups.

292 The wall length, measured as the distance between the inner flange faces ($l_w - 2t_w$) and
293 flange width (b_f), was kept constant through the height of the archetypes. The wall thickness varied
294 approximately every 12 stories (as recommended by the archetype committee). Consequently, the
295 overall wall length (l_w in Figure 7) also varied slightly along the height.

296 **NONLINEAR PERFORMANCE CHECKS**

297 For archetypes taller than 73.2 m (240 ft), nonlinear time history analyses were performed,
298 and the demands were checked with the limits specified in the 2017 Tall Building Initiative
299 Guidelines (denoted as TBI check in Figure 8). These archetypes were subjected to ground motions

300 selected and scaled to the MCE_R CMS (Marafi et al. 2019a) as per Chapter 16 in ASCE 7-16. To
301 be consistent with current practice for tall buildings in Seattle (Chang et al. 2014), the MCE_R CMS
302 spectra were scaled to include basin amplification as computed with the Campbell and Bozorgnia
303 (2014) basin term for crustal earthquakes. Marafi (2018) summarizes the results of the TBI
304 performance checks (i.e., peak story drifts, residual drifts, wall axial strains, shear forces) for the
305 archetypes with 24 stories or more.

306 **ARCHETYPE PROPERTIES**

307 Table 1 lists the nomenclature and key properties for the archetype buildings. The resulting
308 seismic weights per unit floor area (excluding the basement levels) ranged from 8.16 kPa (171 psf)
309 for the eight-story, ASCE 7-10, code-minimum archetype (S8-10-M) to 9.81 kPa (205 psf) for the
310 forty-story, ASCE 7-16, code-enhanced archetype (S40-16-E). Table 1 also lists the upper-bound
311 limit on design period ($C_u T_a$) used to compute C_s and the computed elastic period with cracked
312 concrete properties used in the modal analysis. The total base shear, expressed as a percentage of
313 the total building weight (C_s listed in Table 1), ranged from 4% to 18% depending on the code
314 year and archetype height. The minimum base shear requirement in ASCE 7 controlled for
315 buildings with 24 stories and more for the ASCE 7-10 archetypes, and for 20 stories and more for
316 the ASCE 7-16 archetypes.

317

318 Table 1. Key archetype properties

Performance Group	Arch. ID	# of Stories (Basements)	C _u T _a (s)	Computed Period ¹ (s)	C _s	W ² (MN)	φM _n /M _u ³	V _u /V _c ³	Drift Ratio (%)	Axial Load Ratio (P _g /f _c A _g)
(ASCE 7-10)	Code S4-10-M	4(2)	0.45	1.45	0.152	30.6	1.02	1.7	1.91	0.17
	Minimum S8-10-M	8(3)	0.75	2.25	0.102	60.8	1.05	1.53	1.74	0.12
	S12-10-M	12(4)	1.02	3.1	0.075	90.9	1.06	1.33	1.77	0.13
	S16-10-M	16(4)	1.26	4.06	0.061	122.1	1.05	1.11	1.88	0.13
	S20-10-M	20(4)	1.49	4.96	0.051	154.6	1.05	0.95	1.93	0.14
	S24-10-M	24(4)	1.71	5.33	0.045	188.8	1.06	0.73	1.8	0.12
	Code S4-16-M	4(2)	0.45	1.08	0.183	30.9	1.05	1.74	1.82	0.11
	Minimum S8-16-M	8(3)	0.75	1.93	0.109	61.8	1.06	1.49	1.8	0.1
	S12-16-M	12(4)	1.02	2.7	0.08	92.3	1.01	1.32	1.89	0.11
	S16-16-M	16(4)	1.26	3.53	0.065	125.1	1.03	1.05	1.96	0.11
(ASCE 7-16)	S20-16-M	20(4)	1.49	4.36	0.055	158.5	1.05	0.92	2.03	0.11
	S24-16-M	24(4)	1.71	5.11	0.049 ⁴	195	1.04	0.85	2	0.11
	Code S4-10-E	4(2)	0.45	0.99	0.152	30.8	1.32	1.36	1.35	0.12
	Enhanced S8-10-E	8(3)	0.75	1.51	0.102	61.2	1.17	1.56	1.16	0.11
	S12-10-E	12(4)	1.02	2.15	0.075	92.1	1.18	1.32	1.09	0.13
	S16-10-E	16(4)	1.26	3.02	0.061	122.9	1.18	1.28	1.22	0.15
	S20-10-E	20(4)	1.49	3.91	0.051	154.3	1.19	1.22	1.32	0.16
	S24-10-E	24(4)	1.71	4.37	0.045	189.4	1.5	0.92	1.29	0.14
	S28-10-E	28(4)	1.92	5.17	0.04 ⁴	223.4	1.44	0.89	1.34	0.16
	S32-10-E	32(4)	2.12	5.74	0.04 ⁴	260.9	1.32	0.86	1.33	0.15
(ASCE 7-16)	S36-10-E	36(4)	2.31	6.23	0.04 ⁴	295.2	1.2	0.82	1.3	0.15
	S40-10-E	40(4)	2.5	6.7	0.04 ⁴	334.6	1.18	0.8	1.17	0.15
	Code S4-16-E	4(2)	0.45	0.78	0.183	31.2	1.18	1.36	1.3	0.08
	Enhanced S8-16-E	8(3)	0.75	1.25	0.109	62.2	1.19	1.49	1.12	0.09
	S12-16-E	12(4)	1.02	2	0.08	93.9	1.19	1.25	1.19	0.1
	S16-16-E	16(4)	1.26	2.36	0.065	129.9	1.19	0.99	1.15	0.1
	S20-16-E	20(4)	1.49	2.95	0.055	164.8	1.19	0.88	1.19	0.1
	S24-16-E	24(4)	1.71	3.53	0.049 ⁴	201.6	1.48	0.82	1.24	0.11
	S28-16-E	28(4)	1.92	4.09	0.049 ⁴	240.3	1.27	0.83	1.27	0.11
	S32-16-E	32(4)	2.12	4.62	0.049 ⁴	281.3	1.19	0.84	1.28	0.11
(ASCE 7-16)	S36-16-E	36(4)	2.31	5.13	0.049 ⁴	324.8	1.19	0.84	1.27	0.12
	S40-16-E	40(4)	2.5	5.55	0.049 ⁴	364.9	1.17	0.84	1.3	0.12

319 Notes: ¹Period computed using cracked concrete properties, ² Building seismic weight only includes stories
 320 above ground floor, ³ computed at ground level, ⁴Minimum base shear controls

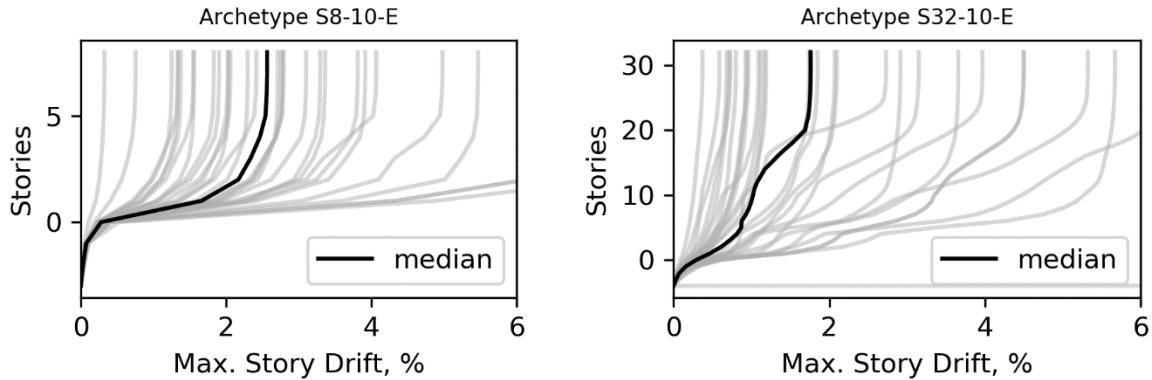
321 The resulting ratio of horizontal shear force (due to seismic loads) to the concrete shear
 322 capacity, V_u/V_c , ranged from 0.53 to 1.56, which is far below the allowable values (i.e., $V_u/V_c \leq$
 323 5). Table 1 lists the resulting axial load ratios, $P_g/(A_g f_c)$, where P_g is the axial load computed using
 324 the 1.0D + 0.5 L load combination, and A_g is the gross cross-sectional area of the wall. The load

325 P_g was computed as the sum of the self-weight of the concrete core and the gravity load
326 corresponding to the tributary area resisted by the core that is equal to 50% of the total floor area,
327 equaling 464 m² (5000 ft²). The resulting axial load ratios ranged from 8% to 17%.

328 **Archetype Nonlinear Modelling**

329 For all of the archetypes, the seismic performance was assessed using 2D nonlinear models
330 in OpenSees (McKenna, 2016) with earthquake motions applied only in one direction. Two-
331 dimensional nonlinear models were used in OpenSees because of the availability of test data for
332 validation (as described in Marafi et al. 2019a) and robustness in performance prediction at large
333 deformations. It is acknowledged that a 2D representation of core walls neglects the effects of
334 torsion and bi-directional loading. The nonlinear behavior of the wall was modelled using a
335 methodology, originally developed by Pugh et al. (2015), that was calibrated with approximately
336 30 experimental tests. Marafi et al. (2019a) extended the methodology to use displacement-based
337 beam-column elements with lumped-plasticity fiber sections to capture the axial and flexural
338 nonlinear responses of the RC walls. The modelling was further improved by modifying the stress-
339 strain behavior of the steel fibers to include the cyclic strength degradation (Kunnath et al. 2009)
340 expected during long-duration shaking. In addition, the pre-peak stress-strain relationship of the
341 concrete material model (*OpenSees Concrete02*) was modified to incorporate the Popovics stress-
342 strain relationship (1973). Appendix B provides details of the modelling methodology.

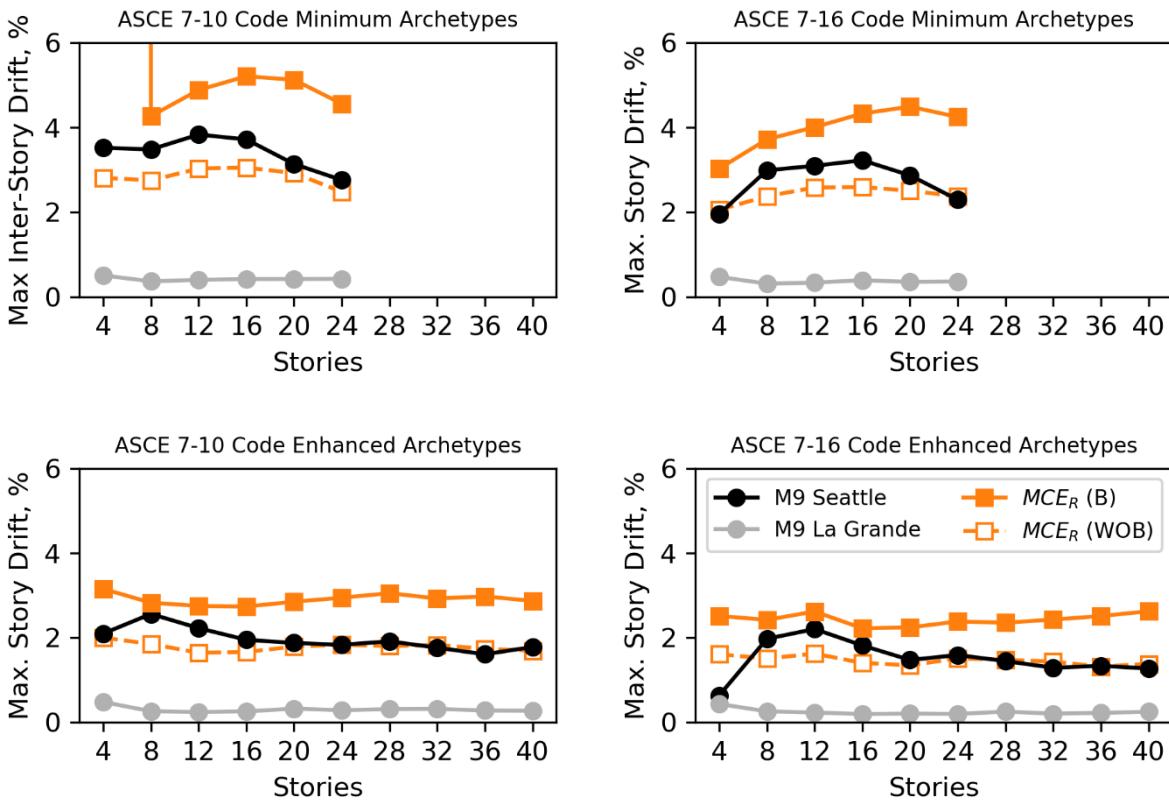
343 **Maximum Story Drift**


344 The maximum story drifts (MSD) for each of the archetypes were computed for: (1) the
345 simulated M9 Motions, for both the Seattle and La Grande sites; (2) motions selected and scaled
346 to match the MCE_R CMS (for Seattle), both with and without considering the basin amplification;

347 and (3) MCE_R-compatible motions selected and scaled to match the conditional mean and variance
348 spectra (CMS+V, Jayaram et al. 2011).

349 **DRIFTS FOR SIMULATED M9 MOTIONS**

350 The 32 archetypes were subjected to the **M9** CSZ motions for Seattle and La Grande in the
351 orientation that produced the maximum spectral ordinate ($S_{a,RotD100}$) at each structure's
352 fundamental period (Table 1), consistent with the nonlinear evaluation provisions of ASCE 7-16
353 (Chapter 16). The relative rotations and strains were usually the largest at the ground level, so that
354 is where the largest amount of damage to the wall would be expected to occur. However, the
355 performance of the gravity slab-column connections, slab-wall connections, facade system, and
356 other non-structural components depend more on the story drift, which tends to increase along the
357 height of RC-core wall buildings.


358 Figure 9 shows the calculated maximum story drift envelope for a representative eight-
359 story archetype (S8-10-E) and a 32-story archetype (S32-10-E), subjected to the **M9** Seattle
360 motions. As expected, the story drifts in the basement are near zero because the basement walls
361 are very stiff. In contrast, the maximum story drifts occur near the top stories, because the
362 cantilever walls accumulate rotations over their height.

363
364 *Figure 9. Distribution of story drift with height for (a) 8-story and (b) 32-story ASCE 7-10 code*
365 *enhanced archetypes, subjected to Simulated M9 Motions in Seattle.*

366 For all four performance groups, Figure 10 plots the median (computed for each set of 30
367 motions) of the maximum story drift (computed over the height of each archetype) for the **M9 CSZ**
368 motions in Seattle and La Grande. For Seattle, the maximum drift ratios for the ASCE 7-10 and
369 ASCE 7-16 code-minimum buildings had medians of 3.4% and 2.7%, respectively. In comparison,
370 the TBI guidelines specify a mean maximum story drift limit of 3.0%. The median computed drift
371 ratios exceeded this limit for 5 of the 6 ASCE 7-10 code-minimum archetypes and 2 out of 6 ASCE
372 7-16 code-minimum archetypes. The drift ratios for the code-enhanced buildings were
373 considerably lower, averaging 1.7% for these two performance groups. None (out of 20) of the
374 code-enhanced designs had median drift ratios that exceeded the TBI limit of 3.0%.

375 As expected, the story drifts for the **M9 La Grande** motions were much lower. They ranged
376 between 0.2 to 0.5% for all performance groups.

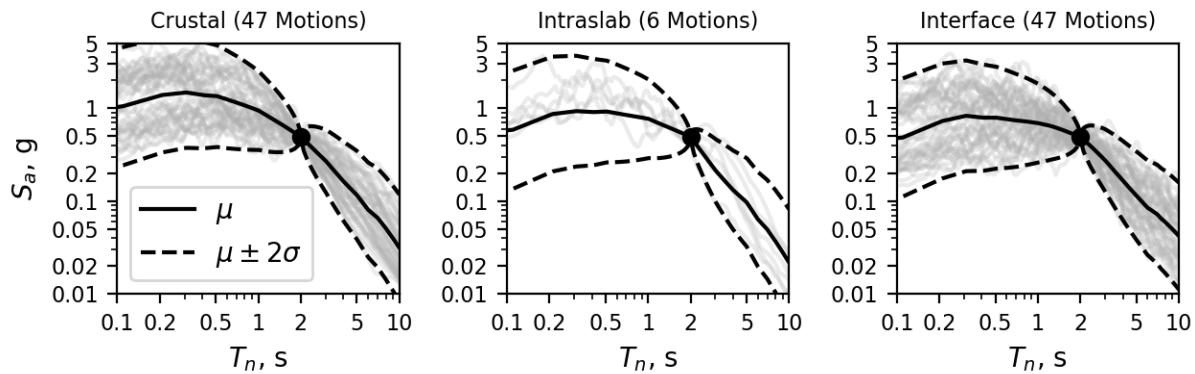
377

378
379
380
381

Figure 10. Median of the maximum story drift with respect to archetype story for (a) code-minimum ASCE 7-10 archetypes, (b) code-minimum ASCE 7-16 archetypes, (c) code-enhanced ASCE 7-10 archetypes, and (d) code-enhanced ASCE 7-16 archetypes

382 **COMPARISON WITH DRIFTS FOR MCE_R CMS MOTIONS**

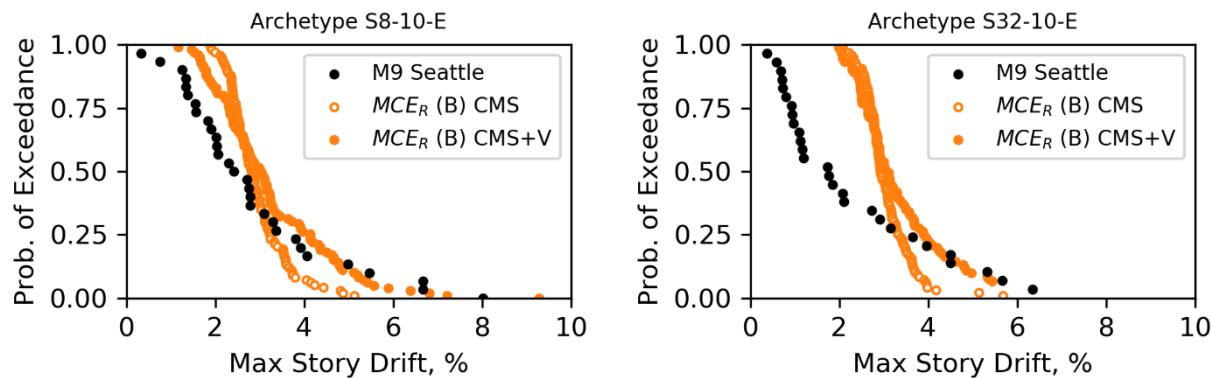
383 The results of the M9 simulations can be placed in the context of current design practice
384 by comparing the drift demands with those calculated for earthquake motions matching the MCE_R
385 Conditional Mean Spectra (CMS) (Figure 10). The effects of the basin are neglected by the national
386 seismic hazard maps and in current practice for most buildings shorter than 73.3m (240 ft), so a
387 suite of 100 MCE_R motions were developed without considering the basin (MCE_R WOB). As
388 shown in Figure 10, the TBI drift limit (3%) for the MCE_R motions without considering the basin
389 was satisfied by nearly all the archetypes (only two archetypes exceeded the limit up to 0.5%). On
390 average (over 32 archetypes), the maximum story drifts for the M9 motions were on average 1.11
391 times higher than those for the MCE_R (WOB) motions.


392 Basins are taken into consideration for the nonlinear evaluation of tall buildings (>240 ft)
393 (Chang et al. 2014), so a second suite of 100 MCE_R motions was developed that accounted for the
394 basin using the Campbell and Bozorgnia (2014) basin amplification term (MCE_R (B)). The
395 computed median of the maximum drift ratios for the M9 motions in Seattle were all lower than
396 the drift ratios for the MCE_R (B) “with-basin” motions currently used to evaluate the performance
397 of tall buildings in Seattle. On average (over 32 archetypes), the median of the maximum story
398 drifts for the M9 motions were equal to 0.67 times the median of the maximum drifts for the MCE_R
399 (B) motions. For the 4-story ASCE 7-10 Code Minimum archetype, 59% of the MCE_R (B) motions
400 resulted in story drifts that exceeded 10% during the analysis. This is illustrated on Figure 10a as
401 a vertical line (with solid square symbols) prior to the 8-story data point.

402 **COMPARISON WITH Drifts for MCE_R CMS + VARIANCE MOTIONS**

403 The comparisons made in Figure 10 are consistent with the performance-design practice
404 for tall buildings (e.g., TBI 2017), in which the performance of a building is evaluated for its
405 median response for a set of ground motions. However, the variability in the thirty M9 simulations
406 is larger than that of the MCE_R CMS motions, because the simulations account for inter-event
407 variability, but the MCE_R CMS motions do not. Unlike the simulations, the CMS process selects
408 and scales motions to fit a target spectrum (Figure 4), representing a “median” event, without
409 considering the variability in the spectra for these motions.

410 To be consistent with the M9 simulations, MCE motions were developed to account for
411 uncertainty of the MCE_R motions. To capture the inter-event uncertainty in the conditional spectra,
412 the MCE_R motions were selected and scaled to match the target mean and variance conditional
413 spectra (CMS+V, Jayaram et al. 2011) in the maximum direction (Shahi and Baker 2011). As an
414 example, Figure 11 shows the response spectra for 100 motions selected to represent the three


415 earthquake source mechanisms for a MCE_R response spectra conditioned at a 2.0 s period. To
 416 capture the uncertainty in the response spectra, motions were selected to have spectral ordinates
 417 that are within two standard deviations of the target conditional spectra whilst achieving the target
 418 mean S_a and target variance at each period. Note that the median values of the motions in Figure
 419 11 are similar to that for Figure 4, but the spectral ordinates (below and above T_n) for the motions
 420 vary more. Marafi (2018) provides details of the ground-motion selection and scaling process.

421
 422 *Figure 11. Ground motion targeting mean and variation of the conditional spectrum at 2.0s*
 423 *(corresponding to the period of archetype S12-16-E) for crustal, intraslab, and interface*
 424 *earthquakes.*

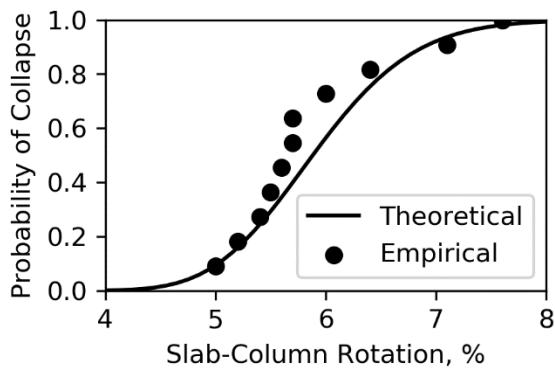
425 Figure 12 shows the probability of exceeding a maximum story drift for the 8-story and
 426 32-story ASCE 7-10 code-enhanced archetypes for three ground-motions sets: **M9** Seattle, MCE_R
 427 conditional mean spectra (MCE_R CMS), and MCE_R conditional mean and variance spectra (MCE_R
 428 CMS+V), including basin effects. As expected, the maximum story drift corresponding to a 50%
 429 probability of exceedance was similar (within ~0.2% drift) between the MCE_R conditional mean
 430 spectra (hollow orange dots in Figure 12) and conditional mean and variance spectra (solid orange
 431 dots in Figure 12). However, the maximum story drift (MSD) values at the tails of the fragility
 432 function (e.g., 16% likelihood of exceedance, one σ below μ) correspond to larger drift levels for
 433 the CMS+V motions (4.4% for archetype S32-10-E) than the CMS motions (3.6% for S32-10-E).

434 The **M9** simulations have even more variability than the CMS+V motions. For example,
 435 consider again archetype S32-10-E. The drift ratio for a probability of exceedance of 16% is 2.57
 436 times the median value for the **M9** Seattle simulations. The corresponding ratios for the MCE_R
 437 CMS+V and CMS motions were 1.43 and 1.24, respectively. These differences are important
 438 because they indicate that, even for ground-motion sets with similar median deformation demands,
 439 the higher variability in the **M9** simulated motions would likely translate to a higher risk of severe
 440 damage, including collapse.

441
 442 *Figure 12. Probability of exceedance with respect to maximum story drift for ASCE 7-10 code-
 443 enhanced (a) 8-Story and (b) 32-Story archetypes.*

444 **Probability of Collapse**

445 Recent building seismic provisions in the United States have been developed to provide a
 446 nominally uniform protection against collapse. The ASCE 7-16 provisions target a 1% likelihood
 447 of collapse during a period of 50 years. For an earthquake with a return period of 500 years
 448 (neglecting other earthquake sources and assuming a Poisson distribution) the 1% in 50-year target
 449 would correspond roughly to a 10% likelihood of collapse during the 500-year event (i.e. $1-e^{-(0.10/500*50)} \simeq 0.01$). Coincidentally, the FEMA P695 (2009) guidelines use the same 10% target
 450 limit for a population of archetypes subjected to the MCE ground motions.


452 Building collapse may occur due to a sway mechanism that results in dynamic instability,
453 in which the lateral drift of the building increases essentially without bound (Haselton et al., 2011b)
454 under earthquake shaking. A building may also collapse (or partially collapse) due to the failure
455 of components of the gravity system. Here, both mechanisms are considered in evaluating collapse.

456 **DRIFT CAPACITY OF GRAVITY SYSTEM**

457 The flat plate and flat slab are the most common gravity systems in modern RC core-wall
458 structures. In this paper, the failure of the gravity system was assumed to be triggered by the failure
459 of the slab-column or slab-wall connection. For these systems, integrity slab reinforcement might
460 delay collapse after punching shear failure, but it was not possible to model this phenomena, so
461 these failures were treated as “collapses”. Experimental data were used to evaluate the likelihood
462 of collapse of the gravity system for a particular drift demand. Recall that the response of the
463 gravity system was not modeled explicitly, as the stiffness and strength contributions of the gravity
464 system were assumed to be lower compared to that of the lateral system. However, if considered
465 the gravity system can contribute ~10% of the total lateral resistance of the building in some
466 circumstances (SEAW Earthquake Engineering Committee meeting, personal communication,
467 2018, January 9th).

468 Hueste et al. (2007 and 2009) found that the drift capacity of slab-column connections
469 depended on: (a) the ratio of shear stress due to gravity loads to the nominal shear-stress capacity
470 provided by the concrete slab (gravity-shear ratio), and (b) the presence of shear reinforcement.
471 To be consistent with design practice, this paper assumes that the archetype’s slab-column
472 connections are reinforced with shear studs and have a gravity shear ratio between 0.4 to 0.6.
473 Figure 13 summarizes the data collected by Hueste et al. (2009) on the connection rotations at the
474 failure of slab-column connections (experiments by Dilger and Cao, 1991, Dilger and Brown,

475 1995, Megally and Ghali, 2000) for all tests that satisfied these two criteria. The data shown in the
 476 figure do not include more recent test results reported by Matzke et al. (2015), who considered a
 477 bidirectional loading protocol and reported lower drift capacities than those determined from
 478 previous tests which considered a unidirectional loading protocol. Figure 13 shows the cumulative
 479 distribution (black dots) of the slab-column drift capacity, as well as the corresponding fitted
 480 lognormal cumulative distribution (black line). The geometric mean of the drift capacity is 5.9%,
 481 and the lognormal standard deviation (σ_{\ln}) is 0.12.

482
 483 *Figure 13. Probability of collapse due to slab-column connection failure with respect to the*
 484 *maximum story drift (for experiments with shear-reinforcements and a gravity shear ratio*
 485 *between 0.4 to 0.6).*

486 Because of limited experimental data, other failure modes in the gravity system are not
 487 considered here. Klemencic et al. (2006) showed that the drift capacity of two slab-wall
 488 connections exceeded 5% story drift, but the connections were not tested to failure. This paper
 489 assumes that the failure would initiate in the slab-column connections.

490 **RACKING DEFORMATIONS**

491 The drift demands on the slab-column connections result from the in-plane rotational
 492 deformations of the gravity system bays. These rotations are affected by: (1) the rigid-body rotation
 493 of the core wall at the elevation of the floor slab, and (2) the added deformations due to racking
 494 effects that result from the difference in vertical deformations between the edge of the core wall

495 and the adjacent gravity-system column, usually located on the perimeter of the building (see
496 Figure 7).

497 The total relative rotation between the slab-column and edge of wall (due to both of these
498 effects) can be computed as the maximum story drift ratio, MSD, amplified by a racking factor,
499 γ_{rack} . Assuming rigid-body rotation of the wall, and assuming no axial shortening in the gravity
500 system columns, the slab-column rotation, SCR, can be approximated as (Charney 1990):

501
$$SCR = \gamma_{\text{rack}} \cdot MSD = \left(1 + \frac{l_w}{2l_{\text{bay}}}\right) \cdot MSD \quad (2)$$

502 where l_w is length of the central core, and l_{bay} is the distance between the face of the core wall and
503 the gravity columns. The length of the core relative to the length of the gravity system bay (for a
504 constant 30.5 m, 100 ft, floor width) varied among the archetypes. Consequently, γ_{rack} varied
505 among the archetypes from 1.11 (Archetype S4-10-M) to 1.56 (Archetype S40-16-E).

506 COLLAPSE PROBABILITY

507 For each archetype and ground motion set, the conditional collapse probabilities for a given
508 earthquake event were computed considering the variability in the column-slab rotations (Eq. 3)
509 calculated from the maximum story drift demands (Figure 12), as well as the variation in drift
510 capacity among the scenarios (Figure 13):

511
$$P[\text{collapse}|\text{event}] = \sum_{i=1}^N P[\text{collapse} | SCR_i] P[SCR_i|\text{event}] \quad (3)$$

512 where N corresponds to the number of scenarios in a set (e.g., M9 Seattle, MCE_R with and without
513 basin effects using CMS+V). $P[\text{collapse}|SCR_i]$ is the probability of collapse for a given a value of
514 slab rotation for a particular scenario (Figure 13). Assuming that all ground-motion scenarios are
515 equally likely, $P[SCR_i|\text{event}] = 1/N$.

516 Figure 14 shows the probability of collapse for each archetype, performance group, and
517 ground-motion set. For comparison, the figure also shows the FEMA P695 target value of 10% for
518 the conditional probability of collapse in the MCE_R for an archetype group. Table 2 summarizes
519 the mean and range of the collapse probabilities for all ground-motion sets and archetype
520 performance groups.

521 For the ASCE 7-16 MCE_R motions developed without considering the effects of the basin
522 (MCE_R WOB) the average collapse probability was near or below the 10% target value. For
523 example, the average collapse probability for ASCE 7-10 and ASCE 7-16 code-minimum
524 archetypes were 13% and 5%, respectively. The average collapse probabilities were even lower
525 for the code-enhanced archetypes (7% and ~0% for the ASCE 7-10 and ASCE 7-16, respectively).
526 These statistics show that the simulated collapse performance of the archetypes is consistent with
527 that expected by the code; the ASCE 7-10 and 7-16 design spectra were developed without
528 considering the effects of basins.

529 The collapse probabilities were much larger for the basin-modified MCE_R motions,
530 denoted as MCE_R (B). For the ASCE 7-16 code-enhanced archetypes, the collapse probabilities
531 for MCE_R (B) motions were near the target values, with an average value of 12% (Table 2). This
532 result is expected, because the lower target drift ratio (1.25% vs 2.0%) and lower demand-to-
533 capacity ratio are usually used by engineers to satisfy the nonlinear performance evaluation with
534 motions that include a basin factor. The ASCE 7-10 code-enhanced archetypes had higher collapse
535 probabilities, as expected, because the design forces were lower, with collapse probabilities
536 ranging from 11% to 32% (Table 2). In contrast, the collapse probabilities for the code-minimum
537 designs far exceeded the 10% limit, reaching values of 66% and 53% for the ASCE 7-10 and

538 ASCE 7-16 code-minimum designs. This comparison shows that the basin effect dramatically
539 increases the likelihood of collapse.

540 The total collapse probability shown in Figure 14 includes scenarios in which story drifts
541 increased without bounds (global instability), as well as the probability of slab-column punching
542 shear failure (Figure 13). The likelihood of global instability (as opposed to punching shear failure)
543 increased as the total likelihood of collapse increased. For example, the global instability
544 mechanism (story drifts $>8\%$) contributed on average 13% of the total collapse probability for all
545 the archetypes with total collapse probability less than 10% (MCE_R (B) ground-motion set). In
546 contrast, the global instability contributed on average 51% of the total collapse probability for all
547 the archetypes with total collapse probability greater than 50%.

548
549
550 *Figure 14. Probability of Collapse with respect to archetype story for (a) code-minimum ASCE*
551 *7-10 (10-E) archetypes, (b) code-minimum ASCE 7-16 (16-M) archetypes, (c) code-enhanced*
552 *ASCE 7-10 (10-E) archetypes, and (d) code-enhanced ASCE 7-16 (16-E) archetypes*

553 Table 2. Summary of Mean and Range of Collapse Probabilities for simulated M9 motions in
554 Seattle.

Ground Motion Set	Model Assumption	Code Minimum Archetypes ASCE 7-10		Code Minimum Archetypes ASCE 7-16		Code Enhanced Archetypes ASCE 7-10		Code Enhanced Archetypes ASCE 7-16	
		Mean	Range	Mean	Range	Mean	Range	Mean	Range
M9 Seattle	Racking	33	20-44	21	7-30	18	9-24	10	3-18
	No Racking	27	14-44	16	7-26	11	4-17	3	0-6
MCE _R (B) CMS+V	Racking	55	30-66	37	15-53	23	11-32	12	3-25
	No Racking	40	18-53	23	11-35	13	4-20	6	0-14
MCE _R (WOB) CMS+V	Racking	13	3-18	5	0-10	7	0-18	0	0-2
	No Racking	9	2-13	3	0-7	6	0-14	0	0-2

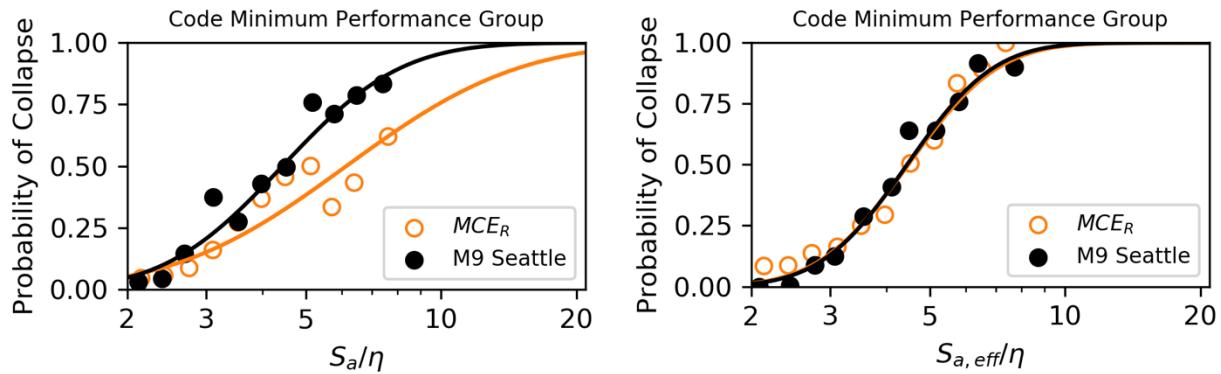
555
556 The collapse probabilities for the M9 simulations are not directly comparable to those
557 targeted for the MCE_R earthquake. The return period for the M9 motions is much shorter than for
558 the MCE_R, and the MCE_R also considers other earthquake sources. Nonetheless, it is instructive to

559 compare the two, because a value of 10% for an **M9** event represents an upper bound on the
560 acceptable collapse probability. The collapse probabilities for the **M9** Seattle motions differed
561 greatly, depending on whether the archetypes were designed to code-minimum levels or code-
562 enhanced levels. For the code-enhanced performance groups, the collapse probabilities for the **M9**
563 Seattle motions were similar to those of the MCE_R (B) motions, with a mean of 11% for the ASCE
564 7-16 buildings. For the code-minimum groups, the collapse probabilities for the **M9** motions fell
565 between the values for the MCE_R (WOB) and MCE_R (B) motions. The average collapse
566 probabilities for the ASCE 7-10 and ASCE 7-16 code-minimum buildings were 33% and 21%,
567 which greatly exceed the upper-bound value of 10%.

568 The average and range of collapse probabilities for each group are summarized in Table 2
569 for the conditions in which racking is considered or neglected. The trends in collapse probability
570 with number of stories are affected by differences in the racking factors. The racking factors tend
571 to increase with structure height, as the wall size increases whereas the location of the gravity
572 columns remain the same. For example, the S4-16-E four-story archetype had γ_{rack} equal to 1.19,
573 which increased the calculated collapse probability from 2% (no racking) to 6% (with racking). In
574 comparison, the S40-16-E forty-story archetype had γ_{rack} equal to 1.56, which increased the
575 calculated collapse probability from 14% (no racking) to 25% (with racking).

576 **Relating Collapse Probabilities to Ground-Motion Characteristics**

577 The large story drifts (Figure 12) and collapse probabilities (Figure 14) estimated for an
578 **M9** earthquake in Seattle are attributable to the combined effects of spectral acceleration, spectral
579 shape, and ground-motion duration. A scalar intensity measure, developed by Marafi et al.
580 (2019b), makes it possible to identify and account for the impact of each of these ground-motion

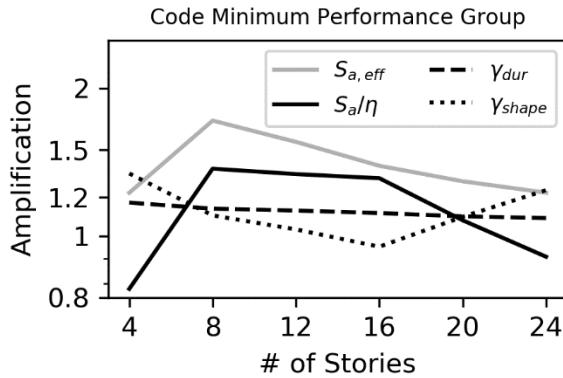

581 characteristics on structural performance. This intensity measure, referred to as the effective
 582 spectral acceleration, $S_{a,\text{eff}}$, can be computed as:

583

$$S_{a,\text{eff}}(T_n) = S_a(T_n) \cdot \gamma_{\text{shape}} \cdot \gamma_{\text{dur}} \quad (4)$$

584 where $\gamma_{\text{shape}} = \frac{SS_a(T_n, \alpha)}{SS_{a,0}}$ accounts the effects of spectral shape, where $SS_{a,0}$ is taken as $\ln \alpha / (\alpha - 1)$,
 585 and $\gamma_{\text{dur}} = \left(\frac{D_{S,5-95}}{12 T_n}\right)^{-1}$ accounts for the effects of duration (Marafi 2018).

586 Collapse fragility functions were derived for all 12 code-minimum archetypes for the M9
 587 Seattle set (30 motions), as well as the MCE_R motions with basin effects and without basin effects
 588 (200 motions for each archetype). To be able to compare the effective spectral accelerations among
 589 the archetypes, the fragility curves were defined using the normalized intensity measures S_a/η and
 590 $S_{a,\text{eff}}/\eta$, where η is the base-shear strength (from pushover analysis) normalized by the seismic
 591 weight of the structure. Figure 15 shows the average collapse probability for 11 bins (spaced
 592 lognormally) and fitted collapse fragilities for the M9 Seattle and MCE_R motions.


593
 594 *Figure 15. Collapse fragility for all code-minimum archetypes subjected to M9 Seattle motions*
 595 *and MCE_R (with and without basins) with respect to (a) normalized spectral acceleration and (b)*
 596 *normalized effective spectral acceleration.*

597 The use of $S_{a,\text{eff}}$ (as opposed to S_a) as a ground-motion intensity factor improved the
 598 estimates of collapse in two ways. As shown in Figure 15a, the likelihood of collapse estimated

599 from S_a differed greatly between the two sets of motions. For example, the value of S_a/η at a
600 collapse probability of 50% (collapse capacity) was 6.15 for the MCE_R motions and 4.43 for the
601 M9 Seattle motions, a difference of 29%. By accounting for the effects of spectral shape (Figure
602 5) and duration (Figure 6) with $S_{a,eff}/\eta$, this difference between collapse capacities reduced to 1%
603 (4.48 for MCE_R and 4.45 for M9).

604 The intensity measure $S_{a,eff}/\eta$ also reduces the uncertainties in collapse prediction within
605 each motion set. This uncertainty is typically quantified using the standard deviation of a log-
606 normal distribution (σ_{ln}). For the M9 motions, σ_{ln} was reduced from 0.48 for S_a/η to 0.35 for $S_{a,eff}/\eta$
607 (a 27% reduction). Similarly, the standard deviation of the fragility curves derived for the MCE_R
608 motions decreased from 0.70 to 0.36, corresponding to a 49% reduction.

609 The form of $S_{a,eff}$ made it possible to identify the contributions of amplification of spectral
610 acceleration, spectral shape, and duration to ground-motion intensity. Figure 16 shows ratio of the
611 value of each component of $S_{a,eff}$ (S_a , γ_{shape} , γ_{dur}) for the M9 motions, divided by the
612 corresponding value for the MCE_R (WOB) CMS+V motions. The contribution of duration was
613 approximately equal to 1.1 for all archetypes. For the shortest (4 stories) and tallest (24 stories),
614 the difference in $S_{a,eff}$ was mainly due to the effects of spectral shape (~1.3). In contrast, the
615 increase in $S_{a,eff}$ was mainly attributable to the effects of spectral acceleration for archetypes with
616 8 to 16 stories (~1.3). Figure 16 shows (solid grey line) that the combined effects of these three
617 factors led to a nearly constant ratio of $S_{a,eff}$ (1.4 ± 0.18), which in turn explains the nearly constant
618 ratio in collapse probabilities (Figure 14 a and b).

619
620 *Figure 16. Ratio of the components of $S_{a,eff}$ (M9 to MCE_R (WOB) CMS+V) with respect to*
621 *number of stories for code-minimum archetypes.*

622 **Other Source of Uncertainty**

623 The previous collapse probability calculations accounted for record-to-record uncertainty
624 among the simulations, and some uncertainty in drift capacity of the gravity system (Figure 13, σ_{ln}
625 = 0.12), but they did not account for other sources of uncertainties. In ASCE 7-16's risk
626 calculations, a total uncertainty (lognormal standard deviation of a collapse fragility) of 0.6 is
627 assumed, which includes a contribution from the record-to-record uncertainty taken as 0.40. The
628 remainder of the included uncertainty (material, design, and modelling uncertainties, FEMA P695)
629 can be approximated as 0.45. To be consistent with the ASCE 7-16 assumptions, the value of the
630 uncertainty in capacity was increased from 0.12 to 0.45.

631 As expected, increasing the uncertainty (from 0.12 to 0.45 in the collapse fragility in Figure
632 13) increased the collapse probability for all archetypes. The average collapse probability under
633 an M9 increase by 3.5% (33.5% to 37.0%) and 4.7% (21.3% to 26.0%) for the ASCE 7-10 and
634 ASCE 7-16 code-minimum archetypes, respectively. The collapse probability also increased for
635 the ASCE 7-10 and ASCE 7-16 code-enhanced archetypes by 2.3% (18.7% to 21.0%) and 1.6%
636 (10.8% to 12.4%), respectively.

637

Summary and Conclusions

638 Thirty physics-based ground-motion simulations (Frankel et al. 2018a) provided the
639 opportunity to evaluate the impacts of an **M9** CSZ earthquake and the Seattle basin on the
640 performance of reinforced concrete core wall buildings in Seattle. The motions were particularly
641 damaging because: (i) the median spectral accelerations exceeded the MCE_R spectra for periods
642 between 1.5 to 4.0 s (Figure 3), (ii) the median spectral shapes were more damaging (up to a period
643 of 4.0 s) than those typically considered in design (MCE_R CMS, Figure 5), and (iii) the motions
644 were much longer than crustal motions typically considered to evaluate structural systems (FEMA
645 P695, Figure 6). These damaging characteristics were attributed to the effects of the Seattle Basin
646 and the large magnitude of the earthquake.

647 The impacts of these motions were evaluated for thirty-two archetypes, ranging from 4 to
648 40 stories, representing modern residential concrete wall buildings in Seattle. Archetypes were
649 developed to reflect the ASCE 7-10 and ASCE 7-16 code provisions, for code-minimum and code-
650 enhanced practice. For all the archetypes, the median (for 30 **M9** scenarios) of the maximum story
651 drift ratio (for each archetype) exceeded the drift ratio for motions that are consistent with the
652 ASCE 7-16 MCE_R spectra, which do not account for the effects of basins (Figure 10). In addition,
653 the calculated drift ratios for the **M9** motions varied more than those for the MCE_R motions, even
654 accounting for variance in the conditional spectrum (MCE_R (B) CMS+V, Figure 12).

655 The average collapse probability for all four performance groups met the 10% collapse
656 probability target for motions that are consistent with the current National Seismic Hazard Maps
657 (MCE_R (WOB) CMS +V, Figure 14), which do not explicitly account for the effects of basin. This
658 result suggests that the archetype design and modeling approaches were consistent with code
659 expectations. In contrast, the collapse probabilities were much larger for motions that considered

660 the effects of the basin (**M9** and MCE_R (B) CMS +V, Figure 14). For example, the code-minimum,
661 ASCE 7-10 buildings had an average conditional collapse probability of 34% for an **M9** event. For
662 the code-enhanced, ASCE 7-16 archetypes, the average collapse probability was 11%. The
663 difference in collapse probabilities (Figure 14) were shown to be attributable (using $S_{a,eff}$) to the
664 combined effects of spectral acceleration, spectral shape and duration (Figure 16).

665 The results presented in this paper are limited to the seismic performance in the uncoupled
666 direction (shown in Figure 7) for ground-shaking in the direction corresponding to the maximum
667 spectral acceleration at the building period. It should be noted that components of RC core wall
668 systems are often coupled and therefore resist induced seismic forces in both orthogonal directions,
669 simultaneously.

670 In interpreting these results, it is important to consider that the 10% collapse probability
671 target corresponds to an MCE_R event with a return period that is much longer than the 500-year
672 return period for the **M9** event. In addition, other sources of earthquakes contribute to the hazard
673 in Seattle. Both considerations will further increase the collapse risk. To reduce collapse risk, the
674 seismic design forces could be increased, engineers could modify the allowable drift levels (similar
675 to the code-enhanced designs), or other solutions could be employed to reduce engineering demand
676 and improve system performance. Alternatively, communities could accept higher collapse risks,
677 as has been done in some regions of the U.S. Any of these approaches would have large
678 implications for structural design in the Pacific Northwest.

679 **Acknowledgments**

680 This research was funded by the National Science Foundation under Grant No. EAR-
681 1331412. The computations were facilitated through the use of advanced computational, storage,
682 and networking infrastructure provided by Texas Advanced Computing Center at the University

683 of Texas at Austin and NSF Grant No. 1520817 (NHERI Cyberinfrastructure). The authors would
684 like to thank (a) Steve Kramer for his help using ProShake for site-response analysis, (b) Silvia
685 Mazzoni for sending a large subset of intraslab motions from the PEER NGA-Subduction project,
686 (c) Doug Lindquist from Hart Crowser for providing access to the EZ-Frisk software to run the
687 CMS calculations, and to (d) David Fields and John Hooper from MKA, Andrew Taylor, Brian
688 Pavlovec, and Scott Neuman from KPFF, and Terry Lundein, Bryan Zagers, and Zach Whitman
689 from CPL, Tom Xia from DCI-Engineers, Clayton Binkley from ARUP, Kai Ki Mow from City
690 of Bellevue, Cheryl Burwell and Susan Chang from City of Seattle for being part of the SEAW
691 Archetype Development Committee. Any opinion, findings, and conclusions or recommendations
692 expressed in this material are those of the authors and do not necessarily reflect the views of the
693 collaborators or sponsoring agencies.

694 **References**

695 Abrahamson, Norman, Nicholas Gregor, and Kofi Addo. 2016. “BC Hydro Ground Motion Prediction Equations for
696 Subduction Earthquakes.” *Earthquake Spectra* 32(1): 23–44.
697 <http://earthquakespectra.org/doi/10.1193/051712EQS188MR> (April 21, 2016).

698 American Concrete Institute (ACI). 2014. “318-14: Building Code Requirements for Structural Concrete and
699 Commentary.”

700 ATC (Applied Technology Council). 2018. *Improving Seismic Design of Buildings with Configuration Irregularities*
701 (*ATC-123*).

702 ASCE. 2013. *Minimum Design Loads for Buildings and Other Structures*. ed. American Society of Civil Engineers.
703 Reston, Virginia: Published by American Society of Civil Engineers.

704 ASCE. 2014. *Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI Standard 41-13)*. Structural
705 Engineering Institute, American Society of Civil Engineers, Reston, VA.

706 ASCE. 2017. *Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16*.
707 Reston, VA: American Society of Civil Engineers.

708 AASHTO. 2017. *LRFD Bridge Design Specifications*. American Association of State Highway and Transportation
709 Officials.

710 Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J.,
711 Darienzo, M. E., Grant, W. C., Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S.
712 P., Peterson, C. D., and Reinhart, M. A. 1995. "Summary of Coastal Geologic Evidence for Past Great
713 Earthquakes at the Cascadia Subduction Zone." *Earthquake Spectra*, 11(1), 1–18.

714 Baker, Jack W. 2011. "Conditional Mean Spectrum: Tool for Ground-Motion Selection." *Journal of Structural
715 Engineering* 137(3): 322–31. <http://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0000215>.

716 Birely, Anna C. 2012. "Seismic Performance of Slender Reinforced Concrete Structural Walls." University of
717 Washington.

718 Bommer, Julian J, Guido Magenes, Jonathan Hancock, and Paola Penazzo. 2004. "The Influence of Strong-Motion
719 Duration on the Seismic Response of Masonry Structures." *Bulletin of Earthquake Engineering* 2(1): 1–26.
720 <http://link.springer.com/10.1023/B:BEEE.0000038948.95616.bf> (August 17, 2015).

721 Boore, D M, and W b. Joyner. 1997. "Site Amplifications for Generic Rock Sites." *Bulletin of the Seismological
722 Society of America* 87(2): 327–41.

723 Building Seismic Safety Council (BSSC). 2009. *NEHRP Recommended Seismic Provisions for New Buildings and
724 Other Structures (FEMA P-750)*.

725 Campbell, Kenneth W, and Yousef Bozorgnia. 2014. "NGA-West2 Ground Motion Model for the Average
726 Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra." *Earthquake
727 Spectra* 30(3): 1087–1115. <http://earthquakespectra.org/doi/10.1193/062913EQS175M> (April 26, 2016).

728 Chandramohan, Reagan, Jack W Baker, and Gregory G Deierlein. 2016. "Quantifying the Influence of Ground
729 Motion Duration on Structural Collapse Capacity Using Spectrally Equivalent Records." *Earthquake Spectra
730* 32(2): 927–50. <http://earthquakespectra.org/doi/10.1193/122813EQS298MR2> (July 24, 2016).

731 Chang, S W, A D Frankel, and C S Weaver. 2014. *Report on Workshop to Incorporate Basin Response in the Design
732 of Tall Buildings in the Puget Sound Region, Washington*.

733 Charney, Finley A. 1990. "Wind Drift Serviceability Limit State Design of Multistory Buildings." *Journal of Wind
734 Engineering and Industrial Aerodynamics* 36: 203–12.
735 <http://linkinghub.elsevier.com/retrieve/pii/016761059090305V>.

736 City of Seattle Department of Planning and Developments. 2015. "Alternate Design Requirements for Use of Special
737 Reinforced Concrete Shear Walls in Over Height Buildings." <http://www.seattle.gov/dpd/codes/dr/DR2015-5.pdf> (April 21, 2018).

738

739 Clough, R. W., and J. Penzien. 2010. *Dynamics of Structures*. Computers and Structures inc; 2nd Revised edition
740 (2010).

741 Coffin, L. F., Jr. 1971. "A Note on Low Cycle Fatigue Laws." *J. Mater.* 6: 388–402.

742 Coffin, L. F., Jr. 1954. "A Study of the Effect of Cyclic Thermal Stresses on a Ductile Metal." *Trans. ASME* 76:
743 931–50.

744 Coleman, J, and Enrico Spacone. 2001. "Localization Issues in Force-Based Frame Elements." *Journal of Structural
745 Engineering* 127(11): 1257–65. <http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%282001%29127%3A11%281257%29>.

746

747 Deng, P., Pei, S., Hartzell, S., Luco, N., and Rezaeian, S. 2018. "A response spectrum-based indicator for structural
748 damage prediction." *Engineering Structures*, 166, 546–555.

749 Dilger, W. G., and S. J. Brown. 1995. *Earthquake Resistance of Slab-Column Connection*. Zurich, Switzerland.

750 Dilger, W., and H. Cao. 1991. "Behaviour of Slab-Column Connections under Reversed Cyclic Loading." In
751 *Proceedings of the Second International Conference of High-Rise Buildings*, China, 10.

752 Eads, Laura, Eduardo Miranda, and Dimitrios G Lignos. 2015. "Average Spectral Acceleration as an Intensity
753 Measure for Collapse Risk Assessment." *Earthquake Engineering & Structural Dynamics* 44(12): 2057–73.
754 <http://doi.wiley.com/10.1002/eqe.2575> (April 12, 2015).

755 FEMA (Federal Emergency Management Agency). 2009. *Quantification of Building Seismic Performance Factors*.
756 Redwood, CA.

757 FEMA (Federal Emergency Management Agency). 2015. *NEHRP Recommended Seismic Provisions for New
758 Buildings and Other Structures (FEMA P-1050-1/2015 Edition)*.

759 Frankel, A. 2009. "A Constant Stress-Drop Model for Producing Broadband Synthetic Seismograms: Comparison
760 with the Next Generation Attenuation Relations." *Bulletin of the Seismological Society of America* 99(2A):
761 664–80. <http://www.bssaonline.org/cgi/doi/10.1785/0120080079> (August 2, 2016).

762 Frankel, A. 2013. "Rupture History of the 2011 M 9 Tohoku Japan Earthquake Determined from Strong-Motion and
763 High-Rate GPS Recordings: Subevents Radiating Energy in Different Frequency Bands." *Bulletin of the*

764 *Seismological Society of America* 103(2B): 1290–1306.
765 <https://pubs.geoscienceworld.org/bssa/article/103/2B/1290-1306/331584>.

766 Frankel, A., W. Stephenson, and D. Carver. 2009. “Sedimentary Basin Effects in Seattle, Washington: Ground-
767 Motion Observations and 3D Simulations.” *Bulletin of the Seismological Society of America* 99(3): 1579–
768 1611. <https://pubs.geoscienceworld.org/bssa/article/99/3/1579-1611/342027>.

769 Frankel, A., E. Wirth, and N. Marafi. 2018a. “The M9 Project Ground Motions.”
770 <https://doi.org/10.17603/DS2WM3W>.

771 Frankel, A., Wirth, E., Marafi, N., Vidale, J., and Stephenson, W. 2018b. “Broadband Synthetic Seismograms for
772 Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and Stochastic Synthetics,
773 Part 1: Methodology and Overall Results.” *Bulletin of the Seismological Society of America*.

774 Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E., Gutiérrez-Pastor, J.,
775 Eriksson, A. T., Gràcia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T. 2012. *Turbidite Event*
776 *History—Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone*.

777 Hancock, Jonathan, and Julian J Bommer. 2007. “Using Spectral Matched Records to Explore the Influence of
778 Strong-Motion Duration on Inelastic Structural Response.” *Soil Dynamics and Earthquake Engineering* 27(4):
779 291–99. <http://linkinghub.elsevier.com/retrieve/pii/S0267726106001588> (August 17, 2015).

780 Haselton, Curt B, Jack W Baker, Abbie B Liel, and Gregory G Deierlein. 2011a. “Accounting for Ground-Motion
781 Spectral Shape Characteristics in Structural Collapse Assessment through an Adjustment for Epsilon.” *Journal*
782 *of Structural Engineering* 137(3): 332–44. <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943->
783 541X.0000103 (February 15, 2015).

784 Haselton, C. B., Liel, A. B., Deierlein, G. G., Dean, B. S., and Chou, J. H. 2011b. “Seismic Collapse Safety of
785 Reinforced Concrete Buildings. I: Assessment of Ductile Moment Frames.” *Journal of Structural Engineering*,
786 137(4), 481–491.

787 Hueste, Mary Beth D., JoAnn Browning, Andres Lepage, and John W. Wallace. 2007. “Seismic Design Criteria for
788 Slab-Column Connections.” *ACI Structural Journal* 104(4): 448–58.

789 Hueste, Mary Beth D., Thomas H.-K. Kang, and Ian N. Robertson. 2009. “Lateral Drift Limits for Structural
790 Concrete Slab-Column Connections Including Shear Reinforcement Effects.” In *Structures Congress 2009*,

791 Reston, VA: American Society of Civil Engineers, 1–10.

792 <http://ascelibrary.org/doi/10.1061/41031%28341%29165>.

793 Jayaram, Nirmal, Ting Lin, and Jack W. Baker. 2011. “A Computationally Efficient Ground-Motion Selection

794 Algorithm for Matching a Target Response Spectrum Mean and Variance.” *Earthquake Spectra* 27(3): 797–

795 815. http://epublications.marquette.edu/cgi/viewcontent.cgi?article=1114&context=civengin_fac.

796 Klemencic, Ron, J. Andrew Fry, Gabriel Hurtado, and Jack P. Moehle. 2006. “Performance of Post-Tensioned Slab-

797 Core Wall Connections.” *PTI Journal* 4(2).

798 Kunnath, Sashi K., YeongAe Heo, and Jon F. Mohle. 2009. “Nonlinear Uniaxial Material Model for Reinforcing

799 Steel Bars.” *Journal of Structural Engineering* 135(4): 335–43.

800 Liu, P C, and R J Archuleta. 2002. “The Effect of a Low-Velocity Surface Layer on Simulated Ground Motion.”

801 *Seismological Research Letters* 73(2): 195–272. <http://srl.geoscienceworld.org/cgi/doi/10.1785/gssrl.73.2.195>

802 (August 3, 2016).

803 Luco, Nicolas, and C Allin Cornell. 2007. “Structure-Specific Scalar Intensity Measures for Near-Source and

804 Ordinary Earthquake Ground Motions.” *Earthquake Spectra* 23(2): 357–92.

805 <http://earthquakespectra.org/doi/abs/10.1193/1.2723158> (February 16, 2015).

806 Manson, S. S. 1965. “Fatigue: A Complex Subject-Some Simple Approximations.” *Exp. Mech.* 5(7): 193–226.

807 Marafi, Nasser A. 2018. “Impacts of an M9 Cascadia Subduction Zone Earthquake on Structures Located In Deep

808 Sedimentary Basins.” University of Washington.

809 Marafi, Nasser A., Jeffrey W. Berman, and Marc O. Eberhard. 2016. “Ductility-Dependent Intensity Measure That

810 Accounts for Ground-Motion Spectral Shape and Duration.” *Earthquake Engineering & Structural Dynamics*

811 45(4): 653–72. <http://onlinelibrary.wiley.com/doi/10.1002/eqe.2678/full>.

812 Marafi, N. A., Eberhard, M. O., Berman, J. W., Wirth, E. A., and Frankel, A. D. 2017. “Effects of Deep Basins on

813 Structural Collapse during Large Subduction Earthquakes.” *Earthquake Spectra*, 33(3), 963–997.

814 Marafi, Nasser A., Kamal A. Ahmed, Dawn E. Lehman, and Laura N. Lowes. 2019a. “Variability in Seismic

815 Collapse Probabilities of Solid and Coupled-Wall Buildings.” *Journal of Structural Engineering*, *in-press*.

816 Marafi, N. A., Eberhard, M. O., Berman, J. W., Wirth, E. A., and D., F. A. 2019b. “Impacts of Simulated M9

817 Cascadia Subduction Zone Motions on Idealized Systems.” *Earthquake Spectra*, *in-press*.

818 Marsh, M. Lee, and Christopher M. Gianotti. 1995. "Inelastic Structural Response to Cascadia Subduction Zone
819 Earthquakes." *Earthquake Spectra* 11(1): 63–89. <http://earthquakespectra.org/doi/10.1193/1.1585803>.

820 Matzke, Eric M., Rémy D. Lequesne, Gustavo J. Parra-Montesinos, and Carol K. Shield. 2015. "Behavior of
821 Biaxially Loaded Slab-Column Connections with Shear Studs." *ACI Structural Journal* 113(3): 335–46.

822 McKenna, F. 2016. "OpenSees." <http://opensees.berkeley.edu/> (April 24, 2018).

823 Megally, S., and A. Ghali. 2000. "Punching Shear Design of Earthquake-Resistant Slab-Column Connections." *ACI
824 Structural Journal* 97(5): 720–30.

825 Miner, M. A. 1945. "Cumulative Damage in Fatigue." *J. Appl. Mech.* 12: A159–A164.

826 Morikawa, N, and H Fujiwara. 2013. "A New Ground Motion Prediction Equation for Japan Applicable up to M9
827 Mega-Earthquake." *Journal of Disaster Research* 8(5): 878–88.
828 <https://www.fujipress.jp/jdr/dr/dsstr000800050878> (April 22, 2016).

829 PEER. 2017. *Tall Building Initiative: Guidelines for Performance-Based Seismic Design of Tall Buildings*. Berkeley,
830 CA. [http://peer.berkeley.edu/news/2017/05/new-peer-report-201706-guidelines-for-performance-based-
seismic-design-of-tall-buildings-version-2-0/](http://peer.berkeley.edu/news/2017/05/new-peer-report-201706-guidelines-for-performance-based-
831 seismic-design-of-tall-buildings-version-2-0/).

832 Petersen, M D, C H Cramer, and A D Frankel. 2002. "Simulations of Seismic Hazard for the Pacific Northwest of
833 the United States from Earthquakes Associated with the Cascadia Subduction Zone." *Pure and Applied
834 Geophysics* 159(9): 2147–68. <http://link.springer.com/10.1007/s00024-002-8728-5> (September 24, 2016).

835 Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., Zeng, Y., Rezaeian,
836 S., Harmsen, S. C., Boyd, O. S., Field, N., Chen, R., Rukstales, K. S., Luco, N., Wheeler, R. L., Williams, R.
837 A., and Olsen, A. H. 2014. *Documentation for the 2014 Update of the United States National Seismic Hazard
838 Maps*.

839 Popovics, Sandor. 1973. "A Numerical Approach to the Complete Stress-Strain Curve of Concrete." *Cement and
840 Concrete Research* 3(5): 583–99.

841 Pugh, Joshua S., Laura N. Lowes, and Dawn E. Lehman. 2015. "Nonlinear Line-Element Modeling of Flexural
842 Reinforced Concrete Walls." *Engineering Structures* 104: 174–92.
843 <http://linkinghub.elsevier.com/retrieve/pii/S0141029615005428>.

844 Raghunandan, Meera, Abbie B Liel, and Nicolas Luco. 2015. “Collapse Risk of Buildings in the Pacific Northwest
845 Region Due to Subduction Earthquakes.” *Earthquake Spectra* 31(4): 2087–2115.
846 <http://earthquakespectra.org/doi/10.1193/012114EQS011M> (October 7, 2016).
847 Saatcioglu, Murat, and Salim R Razvi. 1992. “Strength and Ductility of Confined Concrete.” *Journal of Structural
848 Engineering* 118(6): 1590–1607.
849 Shahi, S. K., and J. W. Baker. 2011. “An Empirically Calibrated Framework for Including the Effects of Near-Fault
850 Directivity in Probabilistic Seismic Hazard Analysis.” *Bulletin of the Seismological Society of America* 101(2):
851 742–55. <https://pubs.geoscienceworld.org/bssa/article/101/2/742-755/349560>.
852 Stephenson, William J, Nadine G Reitman, and Stephen J Angster. 2017. Open-File Report *P- and S-Wave Velocity
853 Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations—Update
854 for Open-File Report 2007-1348*. Version 1. Reston, VA. <http://pubs.er.usgs.gov/publication/ofr20171152>.
855 Structural Engineers Association of Washington. (2018, January 9th). Earthquake Engineering Committee meeting.
856 Wirth, E. A., Frankel, A. D., Marafi, N., Vidale, J. E., and Stephenson, W. J. 2018. “Broadband Synthetic
857 Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and
858 Stochastic Synthetics, Part 2: Rupture Parameters and Variability.” *Bulletin of the Seismological Society of
859 America*.
860 Wong, P. S., F. J. Vecchio, and H. Trommels. 2013. *VECTOR2 & FORMWORKS USER'S MANUAL*.
861 http://www.civ.utoronto.ca/vector/user_manuals/manual1.pdf.
862 Yassin, Mohd Hisham Mohd. 1994. “Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and
863 Cyclic Loads.” University of California, Berkeley.
864

865

Appendix A: Archetype Key Characteristics

866 ARCHETYPE CHARACTERISTICS

867 Thirty two core-wall archetypes were designed, ranging from 4- to 40-stories tall, using
868 ASCE 7-10 and ASCE 7-16 based on the methodology described in the paper. Table A1 and A2
869 summarizes the core length (l_w), core width (b_w), and wall thickness (t_w) for code enhanced and
870 code minimum archetypes, respectively. For all archetypes 8-stories and taller the longitudinal
871 reinforcement ratio (ρ_l) at various story ranges is summarized in Table A1 and A2. Note that the
872 four-story archetypes were designed as a planar wall with boundary elements (i.e., $b_w = t_w$). The
873 boundary element length sizes (l_{be}) and longitudinal reinforcement ratios ($\rho_{l,be}$) are summarized in
874 Table A3 for all 4-story archetypes. Minimum longitudinal reinforcement was used in the web
875 region as permitted by ACI 318, where the reinforcement area equaled 0.25% of the wall cross-
876 section area.

877 The wall's longitudinal reinforcement was tied in the transverse direction and detailed
878 according to the requirements in ACI 318-14 §18.10. The transverse reinforcement ratio is
879 summarized in column ρ_v in Table A1. The variation in wall reinforcement layout along the wall
880 height was optimized to balance efficiency (the required versus the provided reinforcement) and
881 constructability (the number of variations in the section reinforcement layout).

Table A1. Archetype dimensions and reinforcement layout for Code Enhanced Archetypes

Arch. ID	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v	Arch. ID	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v
S4-10-E	-1 to 4	168	0	14	-	-	S4-16-E	-1 to 4	192	0	18	-	-
S8-10-E	-2 to 3	192	96	14	0.90	1.37	S8-16-E	-2 to 3	216	108	16	0.95	1.65
S8-10-E	4 to 6	192	96	14	0.55	0.82	S8-16-E	4 to 6	216	108	16	0.70	1.19
S8-10-E	7 to 8	192	96	14	0.25	0.25	S8-16-E	7 to 8	216	108	16	0.25	0.25
S12-10-E	-3 to 3	240	120	14	0.50	1.49	S12-16-E	-3 to 3	240	120	18	0.85	2.27
S12-10-E	4 to 6	240	120	14	0.50	0.75	S12-16-E	4 to 6	240	120	18	0.60	0.80
S12-10-E	7 to 9	240	120	14	0.35	0.25	S12-16-E	7 to 9	240	120	18	0.40	0.25
S12-10-E	10 to 12	240	120	14	0.25	0.25	S12-16-E	10 to 12	240	120	18	0.25	0.25
S16-10-E	-3 to 4	264	132	14	0.50	1.04	S16-16-E	-3 to 4	288	144	22	0.60	1.44
S16-10-E	5 to 8	264	132	14	0.50	0.75	S16-16-E	5 to 8	288	144	22	0.50	0.81
S16-10-E	9 to 16	264	132	14	0.25	0.25	S16-16-E	9 to 12	288	144	22	0.40	0.25
S20-10-E	-3 to 4	288	144	14	0.50	1.04	S16-16-E	13 to 16	288	144	22	0.25	0.25
S20-10-E	5 to 8	288	144	14	0.50	0.75	S20-16-E	-3 to 4	312	156	24	0.55	1.44
S20-10-E	9 to 12	288	144	14	0.35	0.25	S20-16-E	5 to 8	312	156	24	0.50	1.28
S20-10-E	13 to 20	288	144	14	0.25	0.25	S20-16-E	9 to 12	312	156	24	0.450	0.25
S24-10-E	-3 to 4	312	156	18	1.00	1.96	S20-16-E	13 to 16	312	156	24	0.25	0.25
S24-10-E	5 to 8	312	156	18	0.75	1.00	S20-16-E	17 to 20	304	156	20	0.25	0.25
S24-10-E	9 to 12	312	156	18	0.60	0.80	S24-16-E	-3 to 4	336	168	26	1.10	2.38
S24-10-E	13 to 16	312	156	18	0.50	0.96	S24-16-E	5 to 8	336	168	26	0.75	1.06
S28-10-E	17 to 20	304	156	14	0.50	0.75	S24-16-E	9 to 12	336	168	26	0.60	1.16
S28-10-E	21 to 24	304	156	14	0.50	0.25	S28-16-E	13 to 16	336	168	26	0.50	0.96
S28-10-E	-3 to 4	336	168	18	0.85	1.67	S28-16-E	17 to 24	328	168	22	0.50	0.81
S32-10-E	5 to 8	336	168	18	0.60	0.80	S28-16-E	-3 to 4	360	180	28	0.95	2.90
S32-10-E	9 to 16	336	168	18	0.50	0.67	S28-16-E	5 to 8	360	180	28	0.70	1.07
S32-10-E	17 to 28	332	168	16	0.50	0.59	S32-16-E	9 to 12	360	180	28	0.60	1.24
S36-10-E	-3 to 4	360	180	20	0.75	2.22	S32-16-E	13 to 16	360	180	28	0.50	1.04
S36-10-E	5 to 16	360	180	20	0.50	0.74	S32-16-E	17 to 28	352	180	24	0.50	0.89
S36-10-E	17 to 32	356	180	18	0.50	0.67	S32-16-E	-3 to 4	384	192	30	0.95	3.10
S40-10-E	-3 to 4	384	192	22	0.60	1.96	S32-16-E	5 to 8	384	192	30	0.80	1.31
S40-10-E	5 to 16	384	192	22	0.50	0.81	S36-16-E	9 to 12	384	192	30	0.70	1.14
S40-10-E	17 to 36	372	192	16	0.50	0.59	S36-16-E	13 to 16	384	192	30	0.50	1.60
S40-10-E	-3 to 4	408	204	24	0.60	2.13	S36-16-E	17 to 32	376	192	26	0.50	0.96
S40-10-E	5 to 8	408	204	24	0.60	1.07	S36-16-E	-3 to 4	408	204	32	1.10	2.93
							S36-16-E	5 to 8	408	204	32	0.80	1.07
							S40-16-E	9 to 12	408	204	32	0.70	1.22
							S40-16-E	13 to 16	408	204	32	0.60	1.04
							S40-16-E	17 to 36	400	204	28	0.50	1.04
							S40-16-E	-3 to 4	432	216	34	1.20	3.4
							S40-16-E	5 to 8	432	216	34	1.00	1.42
							S40-16-E	9 to 12	432	216	34	0.80	1.48
							S40-16-E	13 to 16	432	216	34	0.80	2.01

Table A2. Archetype dimensions and reinforcement layout for Code Minimum Archetypes

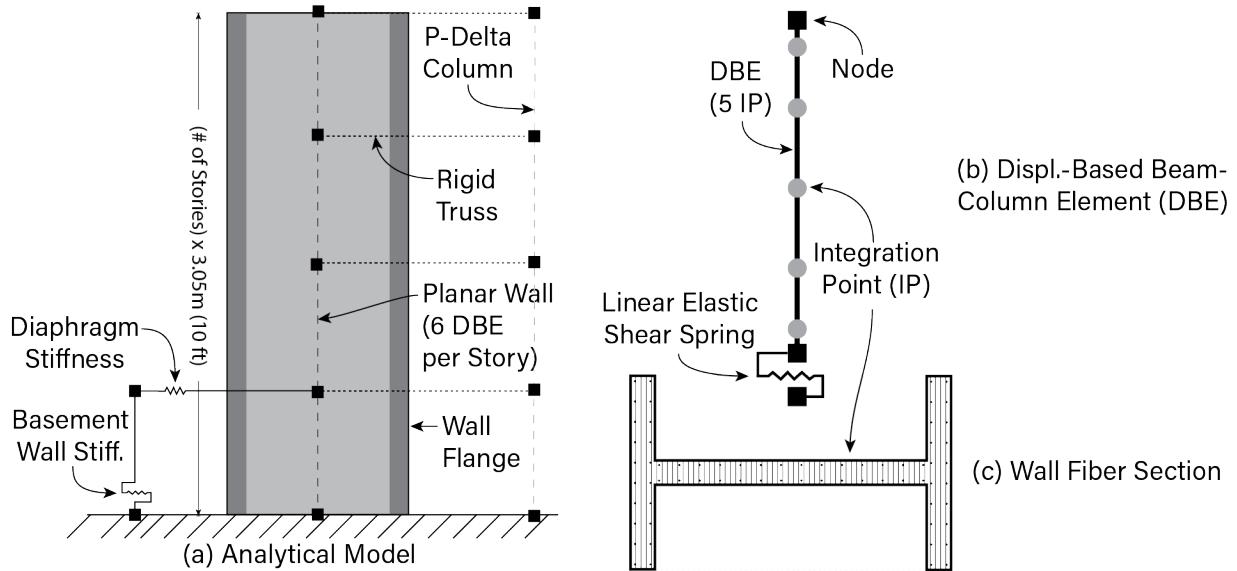
Arch. ID	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v	Arch. ID	Stories	l_w (in)	b_w (in)	t_w (in)	ρ_l	ρ_v
S4-10-M	-1 to 4	120	0	14	-	-	S4-16-M	-1 to 4	144	0	18	-	-
S8-10-M	-2 to 3	132	66	20	2.00	3.33	S8-16-M	-2 to 3	144	72	24	2.00	4.00
S8-10-M	4 to 6	132	66	20	1.10	0.92	S8-16-M	4 to 6	144	72	24	1.00	1.00
S8-10-M	7 to 8	132	66	20	0.25	0.25	S8-16-M	7 to 8	144	72	24	0.25	0.25
S12-10-M	-3 to 3	168	84	20	1.60	2.67	S12-16-M	-3 to 3	180	90	24	1.60	3.20
S12-10-M	4 to 6	168	84	20	1.00	0.83	S12-16-M	4 to 6	180	90	24	1.20	1.20
S12-10-M	7 to 9	160	84	16	0.45	0.25	S12-16-M	7 to 9	168	90	18	0.70	2.10
S12-10-M	10 to 12	160	84	16	0.25	0.25	S12-16-M	10 to 12	168	90	18	0.25	0.25
S16-10-M	-3 to 4	192	96	22	1.40	2.57	S16-16-M	-3 to 4	204	102	28	1.50	3.50
S16-10-M	5 to 8	192	96	22	1.00	0.92	S16-16-M	5 to 8	204	102	28	1.00	1.17
S16-10-M	9 to 12	180	96	16	0.35	0.25	S16-16-M	9 to 12	188	102	20	0.60	1.28
S16-10-M	13 to 16	180	96	16	0.25	0.25	S16-16-M	13 to 16	188	102	20	0.25	0.25
S20-10-M	-3 to 4	216	108	24	1.20	2.40	S20-16-M	-3 to 4	228	114	30	1.40	2.77
S20-10-M	5 to 8	216	108	24	0.90	0.90	S20-16-M	5 to 8	228	114	30	0.95	1.19
S20-10-M	9 to 12	204	108	18	0.50	1.50	S20-16-M	9 to 12	212	114	22	0.70	1.14
S20-10-M	13 to 20	204	108	18	0.25	0.25	S20-16-M	13 to 20	212	114	22	0.25	0.25
S24-10-M	-3 to 4	252	126	28	0.70	4.18	S24-16-M	-3 to 4	252	126	32	1.30	2.74
S24-10-M	5 to 8	252	126	28	0.50	1.49	S24-16-M	5 to 8	252	126	32	1.10	1.47
S24-10-M	9 to 12	232	126	18	0.50	1.50	S24-16-M	9 to 12	240	126	26	0.80	1.13
S24-10-M	13 to 24	232	126	18	0.25	0.25	S24-16-M	13 to 16	240	126	26	0.35	0.25
							S24-16-M	17 to 24	240	126	26	0.25	0.25

Table A3. Boundary element information for the 4-story archetypes.

Archetype ID	Stories	l_{be} (in)	$\rho_{l,be}$
S4-10-E	-1 to 2	42"	0.030
S4-10-E	2 to 4	26"	0.030
S4-16-E	-1 to 2	54"	0.023
S4-16-E	2 to 4	34"	0.023
S4-10-M	-1 to 2	58"	0.029
S4-10-M	2 to 4	26"	0.030
S4-16-M	-1 to 2	50"	0.037
S4-16-M	2 to 4	42"	0.037

889

890


Appendix B. Archetype Modeling

891 For all walled buildings, the seismic performance was assessed using 2D models in
 892 OpenSees (McKenna, 2016) with earthquake demands applied only in one direction. Figure B.1
 893 shows a schematic of the OpenSees models where the walls were modeled using six displacement-
 894 based beam-column elements (DBE) per story, with five integration points per element and
 895 applying the Gauss-Lobatto numerical integration scheme. The axial and flexural response of each
 896 RC cross-section was modeled using a fiber-based approach at each integration point. To account
 897 for shear deformations along the wall height, each DBE included a shear spring. Figure B.1.c
 898 illustrates the fiber cross-section for the walls.

899 **CONSTITUTIVE MODELING**

900 Constitutive models are shown in Figure B.2. Expected concrete and steel material
 901 strengths were defined as $f'_{ce} = 1.3f'_c$ and $f'_{ye} = 1.17f_y$, respectively, per PEER TBI (2017). A
 902 modified version of the OpenSees *Steel02* material model was used to simulate the cyclic response
 903 of reinforcing steel that accounts for cyclic strength-deterioration (Kunnath et al. 2009). This
 904 material model called *Steel02Fatigue* herein, uses the stress-strain backbone curve and
 905 unload/reload paths are defined using the model by Menegotto and Pinto (1973). The cumulative
 906 strength degradation of the material is based on the model by the Coffin (1954, 1971) and Manson
 907 (1965) fatigue life expression and Miner's (1945) linear damage rule. A detailed discussion of this
 908 implementation can be found in Kunnath et al. (2009). The reinforcing bar assumed a modulus
 909 of elasticity, $E_s = 200$ GPa (29,000 ksi), a constant post-yield strain-hardening ratio of 0.6%
 910 (shown as parameter b in Figure B.2). For the *Steel02Fatigue* material, the deterioration
 911 parameters C_d , C_f , α , and β were taken as 0.2, 0.12, 0.44, and 0.45, respectively, as recommended

912 by Kunnath et al. (2009). Figure B.3a compares the stress-strain response of *Steel02* and
 913 *Steel02Fatigue* illustrating the cyclic degradation of strength.

914
 915 Figure B.1. Diagram of the (a) OpenSees analytical model, (b) wall element modeled using displacement-
 916 based elements, and (c) wall fiber section.

917 The longitudinal reinforcing bars inside RC members exhibit excessive buckling once the
 918 surrounding concrete crushes. Pugh developed a simple model to simulate full bar buckling, using
 919 the OpenSees *MinMax* wrapper that forced the reinforcing steel to lose compression and tension
 920 strength once the surrounding concrete reaches residual strain (ϵ_{res} in Figure B.2). To simulate
 921 tensile fracture of the reinforcing bars, the *MinMax* wrapper forced the material to lose strength
 922 once the strains exceed the ultimate tensile strain, ϵ_u , taken as 20%.

923 For concrete materials, a modified version of the OpenSees *Concrete02* material model
 924 (Yassin, 1994) was used to simulate the cyclic response of the concrete. This material model is
 925 called *Concrete02IS* herein, was modified to use Popovics (1973) pre-peak stress-strain
 926 relationship that enabled the user to specify an initial elastic stiffness (E_c) of the concrete
 927 irrespective of the peak-stress and strain (shown in Figure B.3b). For post-peak stress-strain
 928 response, the stresses were assumed to be linear from peak-stress (f_p) to the residual concrete

929 capacity (f_{res}) as shown in Figure B.2b. The strain at maximum stress is denoted as ε_p . For
 930 unconfined concrete, ε_p was set as $2f_p/E_c$ where E_c is defined as $4,750\sqrt{f_p}$ MPa ($57,000\sqrt{f_p}$ psi,
 931 as recommended by ACI 318-14). For the base model, the confined concrete variables $f_p=f'_{cce}$ and
 932 ε_p were defined using recommendations by Saatcioglu and Razvi (1992). The residual concrete
 933 capacity, f_{res} , was taken as βf_p where β is defined as 0.01 for unconfined concrete and 0.2 for
 934 confined concrete. The tensile strength equaled $0.33\sqrt{f_{ce}}$ MPa ($4\sqrt{f_{ce}}$ psi, as per Wong et al. 2013)
 935 and a tensile softening stiffness (E_t) equaled $0.05 E_c$ (Yassin, 1994). The parameter λ in *Concrete02*
 936 was taken as 0.1, which is the ratio of unloading slope at ε_p to E_c .

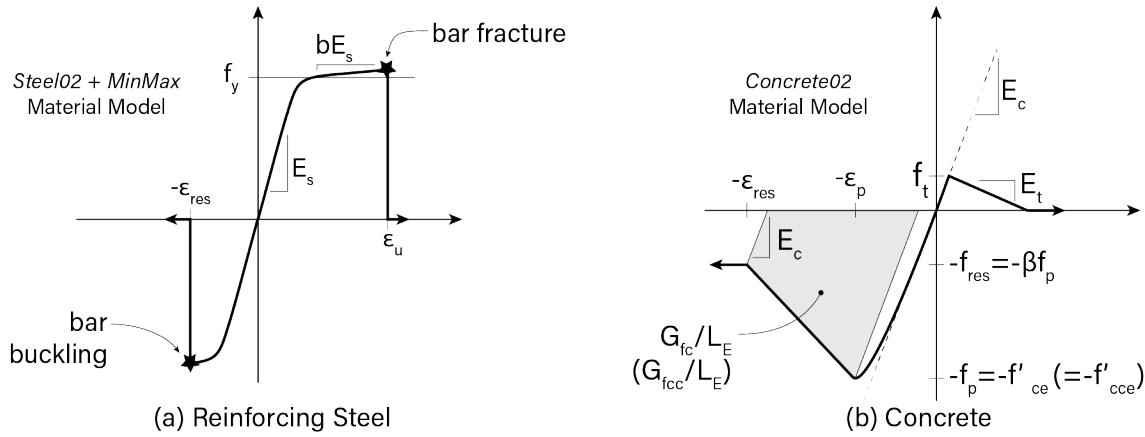
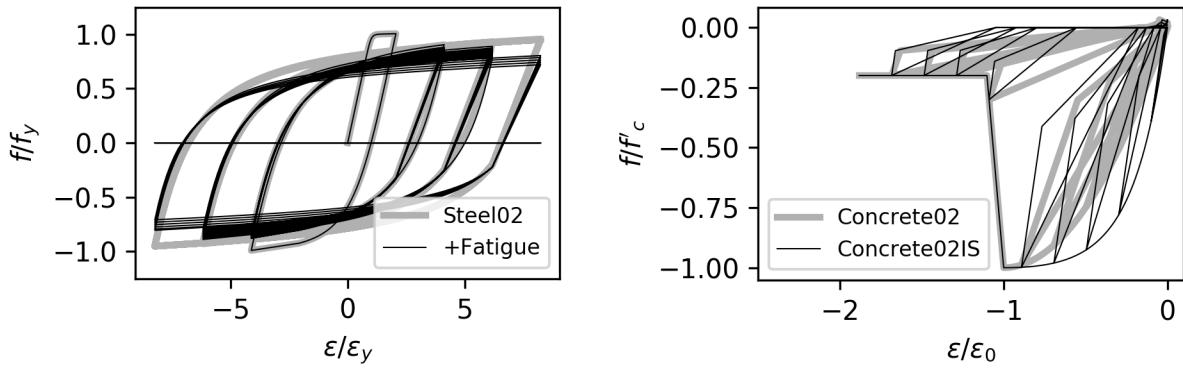



Figure B.2. Stress-strain relationship for the fiber-section (a) reinforcing steel and (b) concrete. Confined concrete properties are shown in parenthesis.

940
 941 Figure B.3. Stress-strain response of a modified OpenSees (a) *Steel02* model that accounts for cyclic
 942 strength degradation based on Kunnath et al. 2009 and (b) *Concrete02* model with revised pre-peak
 943 properties.

944 Birely (2012) showed that the majority of walls sustain a compression-type failure
 945 characterized by simultaneous concrete crushing and buckling of the longitudinal reinforcement.
 946 Coleman & Spacone, (2001) and Pugh et al. (2015) showed that when wall failure occurs and
 947 accompanying strength loss is simulated, deformations localize in the failing element or section,
 948 which results in “mesh-dependent” results if steps are not taken to mitigate this. To minimize mesh
 949 dependences, work by Coleman & Spacone (2001) and Pugh et al. (2015) regularized concrete
 950 compression softening with the post-peak concrete compression stress-strain response using the
 951 concrete compressive energy (G_f) and a measure of the element mesh size. Specifically, regularized
 952 strain at onset of residual compressive strength, ε_{res} , shown in Figure B.2 was computed as,

$$953 \quad \varepsilon_{res} = \frac{2G_f}{(\beta+1)f_p L_e} + \varepsilon_p \frac{\beta+1}{2} \quad (B.1)$$

954 where G_f is defined as the concrete crushing energy in N/mm (kips per in), β is the percentage of
 955 f_p corresponding to the residual compressive strength, and L_E is the length over which softening
 956 occurs in the model. For DBE, L_E is length of the entire element because the DBE formulations
 957 forces localization within a single element (Coleman & Spacone, 2001). The optimal value of G_f
 958 was determined in Marafi et al. (2019a) and taken as $2.0f'_{ce}$ N/mm (0.0134 f'_{ce} kips/in) and $3.5f'_{ce}$
 959 N/mm (0.0268 f'_{ce} kips/in) for unconfined and confined concrete, respectively.

960 Shear deformations were modeled using a linear spring, as shown in Figure B.1. The elastic
 961 shear stiffness of a cantilevered column can be estimated as GA_v/L_E where G is the shear modulus,
 962 A_v is the effective shear area, and L_E is the length of the wall element. This paper approximates G
 963 as $0.4E_c$, as per ACI 318-14, and A_v is taken as $0.83A_g$, where A_g is the gross cross-sectional area
 964 of the web. The resulting shear stiffness equaled $0.33E_c A_g$ which is between the recommended

965 value from TBI ($0.2E_cA_g$) and from ASCE 41-13 (2014, $0.4E_cA_g$). Changes in the shear stiffness
966 did not affect the overall archetype performance because the core walls are flexure controlled.

967 **OTHER MODELLING ASSUMPTIONS**

968 A P-delta column was used to model the effects of the gravity system, as shown in Figure
969 B.3, connected to the RC wall using rigid-truss elements at every story. The P-delta column is a
970 rigid axial element with a pinned support. The vertical load resisted by the P-Delta column at each
971 level is a percentage of the floor area resisted by the gravity system multiplied by the total seismic
972 weight resisted by the wall (i.e., the remainder of the archetype's total vertical load due to gravity
973 not resisted by the wall). The OpenSees models used modal damping and supplemented with
974 stiffness-only Rayleigh damping to dampen the dynamic amplifications associated with higher
975 mode effects (Clough and Penzien 2010). The number of modes that were damped was equal to
976 the total number of stories, N, where the total damping (modal plus stiffness-only Rayleigh) in
977 each mode equaled to 2.5%, as recommended by the TBI 2017.

978 The retaining walls and basement-level diaphragms were modelled using elastic spring
979 element shown in Figure B.3. The diaphragm stiffnesses (axial spring shown in Figure B.3) and
980 basement wall stiffnesses (shear spring shown in Figure B.3) were estimated using a 3-dimensional
981 elastic finite-element model. The basement walls were 305 mm (12 in) thick by 48.8 m (160 ft)
982 long retaining walls around the basement wall perimeter (shown in Figure 7) connected to a 356
983 mm (14 in) thick basement slab at the ground level and 254 mm (10 in) thick at levels below
984 ground. The elastic properties of the retaining wall and diaphragms was estimated as per the
985 recommendation in the TBI 2017 where the basement wall used flexural and shear stiffness equal
986 to $0.8E_cI_g$ and $0.2E_cA_g$, respectively, and the diaphragm axial and shear stiffness is equal to
987 $0.25E_cA_g$ and $0.25E_cI_g$, respectively.