

Estimating Seismic Force Reduction Factors using Spectral Shape and Duration Intensity Measures

Magnitude 9 Earthquake Scenarios – Probabilistic Modeling, Warning, Response and Resilience in the Pacific Northwest Nasser Marafi, Jeffrey Berman, Marc Eberhard, John Vidale, Alison Duvall, Daniel Abramson, Ann Bostrom, Arthur Frankel

- codes?

Seattle Basin

- \bullet

Defining Spectral Shape Intensity Measure

- Explicitly captures spectral shape
- Unaffected by ground motion scaling
- Period range dependent
- Independent of other ground motion IMs

Estimating R_v with SS_a

- Various R_v factors were computed using:
- Expanded FEMA P695 record set
- Elasto-plastic SDOF Oscillators
- Periods ranging from 0.1 to 5s
- \circ Various ductility factors (μ)
- Correlated R_v factors with SS_a
- Prediction model for R_v using:

SS

SS

Estimating Collapse using Spectral Shape and Duration

NSF Award # EAR-1331412

• Computed collapse capacities using:

ere
$$\eta = \frac{F_y}{mg}$$
.

References

Brocher, T. M. (2004). "Interpretation of the Seattle Uplift, Washington, as a Passive-Roof Duplex." Bulletin of the Seismological Society of America, 94(4), 1379–1401. Delorey, A. A., Frankel, A. D., Liu, P., and Stephenson, W. J. (2014). "Modeling the Effects of Source and Path Heterogeneity on Ground Motions of Great Earthquakes on the Cascadia Subduction Zone Using 3D Simulations." Bulletin of the Seismological Society of America, 104(3), 1430–1446.

