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Background and Motivation

Impacts of an M9 Cascadia Subduction Zone Earthquake 
on RC Core Wall Structures in Deep Sedimentary Basins
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 • The Cascadia Subduction Zone (CSZ) is capable of producing an 
M9 earthquake that causes long-duration shaking in the Pacific 
Northwest (PNW).
 • The Puget Sound region is underlain by a deep sedimentary basin 
that is known to amplify the long-period ground-motion frequency 
content.
 • The USGS estimates that an M9 CSZ earthquake has a 500-year 
return period with a 10-14% chance of occurance in the next 50 years. 
 • The impacts of an M9 CSZ earthquake on buildings in the PNW is 
largely unknown because there are currently no recordings of an M9 
earthquakes in the region. 
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Archetype Development
 • The impacts of the M9 CSZ motions on building response were 
assesed using a suite of archetypes that were developed with 
engineering firms in Seattle through collaborative efforts with the 
Structural Engineering Association of Washington. 

 • Study the impact of an M9 CSZ earthquake on a suite of buildings 
in Seattle using (1) ground-motions derived from physics-based 
simulations and (2) numerical models that capture the structure’s 
non-linear reponse.

PUGET LOWLAND BASINS

Deep Sedimentary Basin
 • Tall buildings in Seattle are founded on glacially compacted till 
with a shear-wave velocity reaching up to 500 m/s near the surface.
 • Hard rock with shear-wave velocity equal to 2,500 m/s is around 8 
km below the city of Seattle.
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Physics-Based Simulations
 • Frankel et al. (2018) generated over 30 realizations of an M9 CSZ 
scenario which are largely based on the logic trees that make up the 
National Seismic Hazard Maps.

Spectral Acceleration
 • Median spectral accelerations from an M9 CSZ earthquake is 
found to be  larger than the MCER for periods between 1 to 3s.

Ground Motion Duration
 • The 5-95% Significant Duration (Ds,5-95) was found to increase with 
closest distance to rupture (RCD) and is around 120 s long in Seattle. 
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Archetype Properties:
  • 10’ floor-to-floor height  
  • 2-4 basement Levels included 
  • 130 psf + Core Weight
  • f’

c = 8 ksi for core, 5 ksi elsewhere
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 • The engineering demands of each archetype under an M9 CSZ 
earthquake are compared to those expected from ground-motions 
selected and scaled to match the conditional spectra at MCER intensity. 
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 • The ground motions inside the basin (Seattle) were found to have 
larger spectral accelerations and more damaging spectral shapes. 
 • The collapse probability under an M9 CSZ earthquake were found 
to be mostly larger than MCER CS motions for both with and without 
basin effects considered. 
 • The 50-year collapse risk would likely exceed the 1% target in 
ASCE 7-16 if the simulated M9 CSZ motions in Seattle were considered. 
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 • The earthquake response of RC core walls is idealized in a 
2-dimensional OpenSees model using non-linear material models that 
have been calibrated to over 15 experiemental test specimens. 
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Structural Collapse
 • The structure’s collapse susceptibility was determined using the 
maximum rotation drift demands of the slab-column connections. The 
likelihood of slab-column 
connection failure was 
determined using a collapse 
fragility that was generated 
using  experimental data of the 
the drift capacity of PT slabs 
with shear stud reinforcement 
and gravity shear ratio between 
0.4 to 0.6.  
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λcollapse,M9 = λM9 • P[collapse|event]

P[collapse|event] = Σi=1 P[collapse|SCRi] • P[SCRi|event]N

 • The probability of collapse under an earthquake event can be 
computed using the equation below:

Max. Slab-Column
Rotation in Event

Conclusion

 • Considering the 500-year return period of an M9 CSZ earthquake, 
the annual collapse risk can be computed as:
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